Skip to main content
deleted 111 characters in body
Source Link
azerbajdzan
  • 35.1k
  • 2
  • 30
  • 80

Definition of expr should be taken from OP.

This depends on choosing correct extension for factorization.

The additional extension ext was discovered by solving one of the surds appearing in expr (except obvious Sqrt[2]).

Solve[5 - 2 Sqrt[2] + (3 - 2 Sqrt[2]) U^2 == 0] // 
  RootReduce // ToRadicals

enter image description here

ext = {Sqrt[7 + 4 Sqrt[2]], I};

Cases[expr, Sqrt[___] | Power[___, -1/2 | 1/2], All] // Union;

FactorTerms@% /. Sqrt[x_] :> Sqrt[Factor[x, Extension -> {Sqrt[2]}]];

% /. x : Sqrt[_] :> FullSimplify[x, U \[Element] Reals];

expr /. Thread[%%% -> %];

% /. {Sqrt[x___] :> Sqrt@Factor[x, Extension -> ext], 
     Power[x___, y : 1/2 | -1/2] :> Factor[x, Extension -> ext]^y} // 
   Cancel // FullSimplify;

Factor[%, Extension -> {Sqrt[7 + 4 Sqrt[2]], I}]ext] // FullSimplify

enter image description here

Definition of expr should be taken from OP.

This depends on choosing correct extension for factorization.

The additional extension ext was discovered by solving one of the surds appearing in expr (except obvious Sqrt[2]).

Solve[5 - 2 Sqrt[2] + (3 - 2 Sqrt[2]) U^2 == 0] // 
  RootReduce // ToRadicals

enter image description here

ext = {Sqrt[7 + 4 Sqrt[2]], I};

Cases[expr, Sqrt[___] | Power[___, -1/2 | 1/2], All] // Union;

FactorTerms@% /. Sqrt[x_] :> Sqrt[Factor[x, Extension -> {Sqrt[2]}]];

% /. x : Sqrt[_] :> FullSimplify[x, U \[Element] Reals];

expr /. Thread[%%% -> %];

% /. {Sqrt[x___] :> Sqrt@Factor[x, Extension -> ext], 
     Power[x___, y : 1/2 | -1/2] :> Factor[x, Extension -> ext]^y} // 
   Cancel // FullSimplify;

Factor[%, Extension -> {Sqrt[7 + 4 Sqrt[2]], I}] // FullSimplify

enter image description here

Definition of expr should be taken from OP.

This depends on choosing correct extension for factorization.

The additional extension ext was discovered by solving one of the surds appearing in expr (except obvious Sqrt[2]).

Solve[5 - 2 Sqrt[2] + (3 - 2 Sqrt[2]) U^2 == 0] // 
  RootReduce // ToRadicals

enter image description here

ext = {Sqrt[7 + 4 Sqrt[2]], I};

Cases[expr, Sqrt[___] | Power[___, -1/2 | 1/2], All] // Union;

FactorTerms@% /. Sqrt[x_] :> Sqrt[Factor[x, Extension -> {Sqrt[2]}]];

% /. x : Sqrt[_] :> FullSimplify[x, U \[Element] Reals];

expr /. Thread[%%% -> %];

% /. {Sqrt[x___] :> Sqrt@Factor[x, Extension -> ext], 
     Power[x___, y : 1/2 | -1/2] :> Factor[x, Extension -> ext]^y} // 
   Cancel // FullSimplify;

Factor[%, Extension -> ext] // FullSimplify

enter image description here

deleted 111 characters in body
Source Link
azerbajdzan
  • 35.1k
  • 2
  • 30
  • 80

Definition of expr should be taken from OP.

This depends on choosing correct extension for factorization.

The additional extension ext was discovered by solving one of the surds appearing in expr (except obvious Sqrt[2]).

Solve[5 - 2 Sqrt[2] + (3 - 2 Sqrt[2]) U^2 == 0] // 
  RootReduce // ToRadicals

enter image description here

ext = {Sqrt[7 + 4 Sqrt[2]], I};

Cases[expr, Sqrt[___] | Power[___, -1/2 | 1/2], All] // Union;

FactorTerms@% /. Sqrt[x_] :> Sqrt[Factor[x, Extension -> {Sqrt[2]}]];

% /. x : Sqrt[_] :> FullSimplify[x, U \[Element] Reals];

expr /. Thread[%%% -> %];

% /. {Sqrt[x___] :> 
      Sqrt@Factor[x, Extension -> {Sqrt[7 + 4 Sqrt[2]], I}]ext], 
     Power[x___, -1/2]y :> 
      Factor[x, Extension -> {Sqrt[7 + 4 Sqrt[2]], I}]^(-1/2), 
     Power[x___,| -1/2] :> 
      Factor[x, Extension -> {Sqrt[7 + 4 Sqrt[2]], I}]^(1/2)ext]^y} // 
   Cancel // FullSimplify;

Factor[%, Extension -> {Sqrt[7 + 4 Sqrt[2]], I}] // FullSimplify

enter image description here

Definition of expr should be taken from OP.

This depends on choosing correct extension for factorization.

The additional extension was discovered by solving one of the surds appearing in expr (except obvious Sqrt[2]).

Solve[5 - 2 Sqrt[2] + (3 - 2 Sqrt[2]) U^2 == 0] // 
  RootReduce // ToRadicals

enter image description here

Cases[expr, Sqrt[___] | Power[___, -1/2 | 1/2], All] // Union;

FactorTerms@% /. Sqrt[x_] :> Sqrt[Factor[x, Extension -> {Sqrt[2]}]];

% /. x : Sqrt[_] :> FullSimplify[x, U \[Element] Reals];

expr /. Thread[%%% -> %];

% /. {Sqrt[x___] :> 
      Sqrt@Factor[x, Extension -> {Sqrt[7 + 4 Sqrt[2]], I}], 
     Power[x___, -1/2] :> 
      Factor[x, Extension -> {Sqrt[7 + 4 Sqrt[2]], I}]^(-1/2), 
     Power[x___, 1/2] :> 
      Factor[x, Extension -> {Sqrt[7 + 4 Sqrt[2]], I}]^(1/2)} // 
   Cancel // FullSimplify;

Factor[%, Extension -> {Sqrt[7 + 4 Sqrt[2]], I}] // FullSimplify

enter image description here

Definition of expr should be taken from OP.

This depends on choosing correct extension for factorization.

The additional extension ext was discovered by solving one of the surds appearing in expr (except obvious Sqrt[2]).

Solve[5 - 2 Sqrt[2] + (3 - 2 Sqrt[2]) U^2 == 0] // 
  RootReduce // ToRadicals

enter image description here

ext = {Sqrt[7 + 4 Sqrt[2]], I};

Cases[expr, Sqrt[___] | Power[___, -1/2 | 1/2], All] // Union;

FactorTerms@% /. Sqrt[x_] :> Sqrt[Factor[x, Extension -> {Sqrt[2]}]];

% /. x : Sqrt[_] :> FullSimplify[x, U \[Element] Reals];

expr /. Thread[%%% -> %];

% /. {Sqrt[x___] :> Sqrt@Factor[x, Extension -> ext], 
     Power[x___, y : 1/2 | -1/2] :> Factor[x, Extension -> ext]^y} // 
   Cancel // FullSimplify;

Factor[%, Extension -> {Sqrt[7 + 4 Sqrt[2]], I}] // FullSimplify

enter image description here

Source Link
azerbajdzan
  • 35.1k
  • 2
  • 30
  • 80

Definition of expr should be taken from OP.

This depends on choosing correct extension for factorization.

The additional extension was discovered by solving one of the surds appearing in expr (except obvious Sqrt[2]).

Solve[5 - 2 Sqrt[2] + (3 - 2 Sqrt[2]) U^2 == 0] // 
  RootReduce // ToRadicals

enter image description here

Cases[expr, Sqrt[___] | Power[___, -1/2 | 1/2], All] // Union;

FactorTerms@% /. Sqrt[x_] :> Sqrt[Factor[x, Extension -> {Sqrt[2]}]];

% /. x : Sqrt[_] :> FullSimplify[x, U \[Element] Reals];

expr /. Thread[%%% -> %];

% /. {Sqrt[x___] :> 
      Sqrt@Factor[x, Extension -> {Sqrt[7 + 4 Sqrt[2]], I}], 
     Power[x___, -1/2] :> 
      Factor[x, Extension -> {Sqrt[7 + 4 Sqrt[2]], I}]^(-1/2), 
     Power[x___, 1/2] :> 
      Factor[x, Extension -> {Sqrt[7 + 4 Sqrt[2]], I}]^(1/2)} // 
   Cancel // FullSimplify;

Factor[%, Extension -> {Sqrt[7 + 4 Sqrt[2]], I}] // FullSimplify

enter image description here