Here's how to do it by conditional probability. Picking a point uniformly at random inside the square has the distribution as $(X,Y)$ where $X,Y$ are iid Uniform$[0,1]$ random variables.
Let $D$ be the quantity you want, the maximum distance from the furthest edge.
$E(D)=E(E(D|X=x))$.
Now, if $X=x$, and suppose $x\leq 0.5$, then $D=\begin{cases}1-Y\quad, Y\leq x\\1-x\quad ,x\leq Y\leq 1-x\\
Y\quad ,1-x\leq Y\leq 1\end{cases}$
Similarly do the same for $0.5\leq x\leq 1$.
So $$E(D|X=x)=\begin{cases}1-(1-x)^{2}+(1-x)(1-2x)\qquad ,0<x\leq 0.5\\
1-x^{2}+x(2x-1)\qquad,1>x>0.5\end{cases}$$
So $$E(D)=\int_{0}^{1/2}1-(1-x)^{2}+(1-x)(1-2x)\,dx+\int_{1/2}^{1}1-x^{2}+x(2x-1)\,dx\\
=\frac{5}{12}+\frac{5}{12}=\frac{5}{6}\qquad\Box$$
Alternatively, $E(D)=E(D|X=x,X\leq \frac{1}{2})P(X\leq \frac{1}{2})+E(D|X=x,X\geq \frac{1}{2})P(X\geq \frac{1}{2})$
In both cases, the expectations must equal by symmetry. Also, conditioned on $X\leq \frac{1}{2}$, $X$ has Uniform$[0,\frac{1}{2}]$ distribution.
\begin{align}E(D)&=2\cdot\int_{0}^{1/2}\bigg(\int_{0}^{x}(1-y)\,dy+\int_{x}^{1-x}(1-x)\,dy+\int_{1-x}^{1}y\,dy\bigg)\,dx\\
&=\frac{5}{6}\qquad \Box\end{align}