Skip to main content

Part of the book series: Progress in Probability ((PRPR,volume 44))

  • 1315 Accesses

  • 46 Citations

Abstract

Loop-erased random walk (LERW) is a process obtained from erasing loops from simple random walk. This paper reviews some of the results and conjectures about LERW. In particular, we discuss the critical exponents for LERW, Wilson’s algorithm for generating uniform spanning trees with LERW, and the role of conformal invariance in studying LERW in two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aizenman, M. and Burchard, A. (1998). Hölder regularity and dimension bounds for random curves, preprint.

    Google Scholar 

  2. Aizenman, M., Burchard, A., Newman, C., and Wilson, D. (1998). Scaling limits for minimal and random spanning trees in two dimensions, preprint.

    Google Scholar 

  3. Benjamini, I. (1998). Large scale degrees and the number of spanning clusters for the uniform spanning tree, preprint.

    Google Scholar 

  4. Burdzy, K. and Lawler, G. (1990). Non-intersection exponents for random walk and Brownian motion. Part II: Estimates and applications to a random fractal. Annals of Prob. 18, 981–1009.

    Article  MathSciNet  MATH  Google Scholar 

  5. Duplantier, B. (1992). Loop-erased self-avoiding walks in 2D, Physica A 191, 516–522.

    Article  Google Scholar 

  6. Fargason, C. (1998). The percolation dimension of Brownian motion in three dimensions, Ph.D. dissertation, Duke University.

    Google Scholar 

  7. Guttmann, A. and Bursill, R. (1990). Critical exponent for the loop-erased self-avoiding walk by Monte Carlo methods. J. Stat. Phys. 59, 1–9.

    Article  Google Scholar 

  8. Kenyon, R. (1998). The asymptotic distribution of the discrete Laplacian, preprint.

    Google Scholar 

  9. Kesten, H. (1987). Hitting probabilities of random walks on Zd, Stoc. Proc. and Appl. 25, 165–184.

    Article  MathSciNet  MATH  Google Scholar 

  10. Lawler, G. (1980). A self-avoiding walk. Duke Math J. 47, 655–694.

    Article  MathSciNet  MATH  Google Scholar 

  11. Lawler, G. (1991). Intersections of Random Walks. Birkhäuser, Boston.

    Google Scholar 

  12. Lawler, G. (1992). Escape probabilities for slowly recurrent sets, Prob. Theor. Rel. Fields 94, 91–117.

    Article  MathSciNet  MATH  Google Scholar 

  13. Lawler, G. (1995). The logarithmic correction for loop-erased walk in four dimensions, Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993), special issue of J. Fourier Anal. Appl., 347–362.

    Google Scholar 

  14. Lawler, G. (1996). Cut points for simple random walk, Electronic Journal of Probability 1, #13.

    Google Scholar 

  15. Lawler, G. (1998) Strict concavity of the intersection exponent for Brownian motion in two and three dimensions, Math. Phys. Electron. J. 4, paper no. 5.

    MathSciNet  Google Scholar 

  16. Lawler, G. (1998). A lower bound on the growth exponent for loop-erased random walk in two dimensions, preprint.

    Google Scholar 

  17. Lawler, G. and Werner, W. (1998). Intersection exponents for planar Brownian motion, preprint.

    Google Scholar 

  18. Madras, N. and Slade, G. (1993). The Self-Avoiding Walk. Birkhäuser, Boston.

    MATH  Google Scholar 

  19. Majumdar, S.N. (1992). Exact fractal dimension of the loop-erased self-avoiding random walk in two dimensions, Phys. Rev. Letters 68, 2329–2331.

    Article  Google Scholar 

  20. Pemantle, R. (1991). Choosing a spanning tree for the integer lattice uniformly, Annals of Prob. 19, 1559–1574.

    Article  MathSciNet  MATH  Google Scholar 

  21. Propp, J. and D. Wilson (1998). How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph, Journal of Algorithms 27, 170–217.

    Article  MathSciNet  MATH  Google Scholar 

  22. Schramm, O., in preparation.

    Google Scholar 

  23. D. Wilson (1996). Generating random spanning trees more quickly than the cover time. Proc. Twenty-Eighth Annual ACM Symposium on Theory of Computing, 293–303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Boston

About this chapter

Cite this chapter

Lawler, G.F. (1999). Loop-Erased Random Walk. In: Bramson, M., Durrett, R. (eds) Perplexing Problems in Probability. Progress in Probability, vol 44. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2168-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2168-5_12

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7442-1

  • Online ISBN: 978-1-4612-2168-5

  • eBook Packages: Springer Book Archive

Keywords

Publish with us

Policies and ethics