MSSQL
https://www.microsoft.com/sql-server

Install
Install Ibis and dependencies for the MSSQL backend:
Install with the mssql extra:
pip install 'ibis-framework[mssql]'And connect:
import ibis
con = ibis.mssql.connect()- 1
- Adjust connection parameters as needed.
Install for MSSQL:
conda install -c conda-forge ibis-mssqlAnd connect:
import ibis
con = ibis.mssql.connect()- 1
- Adjust connection parameters as needed.
Install for MSSQL:
mamba install -c conda-forge ibis-mssqlAnd connect:
import ibis
con = ibis.mssql.connect()- 1
- Adjust connection parameters as needed.
Connect
ibis.mssql.connect
con = ibis.mssql.connect(
user="username",
password="password",
host="hostname",
driver="SQL Server",
)con = ibis.mssql.connect(
user="username",
password="password",
host="hostname",
driver="FreeTDS", # if you are using unixODBC
)ibis.mssql.connect is a thin wrapper around ibis.backends.mssql.Backend.do_connect.
Connection Parameters
do_connect
do_connect(self, host='localhost', user=None, password=None, port=1433, database=None, driver=None, **kwargs)
Connect to MSSQL database.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| host | str | Address of MSSQL server to connect to. | 'localhost' |
| user | str | None | Username. Leave blank to use Integrated Authentication. | None |
| password | str | None | Password. Leave blank to use Integrated Authentication. | None |
| port | int | Port of MSSQL server to connect to. | 1433 |
| database | str | None | The MSSQL database to connect to. | None |
| driver | str | None | ODBC Driver to use. On Mac and Linux this is usually ‘FreeTDS’. On Windows, it is usually one of: - ODBC Driver 11 for SQL Server - ODBC Driver 13 for SQL Server (for both 13 and 13.1) - ODBC Driver 17 for SQL Server - ODBC Driver 18 for SQL Server See https://learn.microsoft.com/en-us/sql/connect/odbc/windows/system-requirements-installation-and-driver-files | None |
| kwargs | Any | Additional keyword arguments to pass to PyODBC. | {} |
Examples
>>> import os
>>> import ibis
>>> host = os.environ.get("IBIS_TEST_MSSQL_HOST", "localhost")
>>> user = os.environ.get("IBIS_TEST_MSSQL_USER", "sa")
>>> password = os.environ.get("IBIS_TEST_MSSQL_PASSWORD", "1bis_Testing!")
>>> database = os.environ.get("IBIS_TEST_MSSQL_DATABASE", "ibis-testing")
>>> driver = os.environ.get("IBIS_TEST_MSSQL_PYODBC_DRIVER", "FreeTDS")
>>> con = ibis.mssql.connect(
... database=database,
... host=host,
... user=user,
... password=password,
... driver=driver,
... )
>>> con.list_tables()
[...]
>>> t = con.table("functional_alltypes")
>>> t
DatabaseTable: functional_alltypes
id int32
bool_col boolean
tinyint_col int16
smallint_col int16
int_col int32
bigint_col int64
float_col float32
double_col float64
date_string_col string
string_col string
timestamp_col timestamp(7)
year int32
month int32ibis.connect URL format
In addition to ibis.mssql.connect, you can also connect to MSSQL by passing a properly-formatted MSSQL connection URL to ibis.connect:
con = ibis.connect(f"mssql://{user}:{password}@{host}:{port}")Using Integrated Authentication
Integrated Authentication allows users to log in via NTLM or Kerberos. To make use of integrated authentication, use ibis.mssql.connect as documented above, but do not specify values for user or password. The PyODBC driver will then default to Integrated Authentication.
Some environments may require you to set additional keywords to connect. Additional information is available at the following pages:
- https://learn.microsoft.com/en-us/aspnet/web-api/overview/security/integrated-windows-authentication
- https://learn.microsoft.com/en-us/sql/connect/odbc/linux-mac/using-integrated-authentication
mssql.Backend
begin
begin(self)
compile
compile(self, expr, /, *, limit=None, params=None, pretty=False)
Compile an expression to a SQL string.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Expr | An ibis expression to compile. | required |
| limit | str | int | None | An integer to effect a specific row limit. A value of None means no limit. |
None |
| params | Mapping[ir.Expr, Any] | None | Mapping of scalar parameter expressions to value. | None |
| pretty | bool | Pretty print the SQL query during compilation. | False |
Returns
| Name | Type | Description |
|---|---|---|
| str | Compiled expression |
connect
connect(self, *args, **kwargs)
Connect to the database.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| *args | Mandatory connection parameters, see the docstring of do_connect for details. |
() |
|
| **kwargs | Extra connection parameters, see the docstring of do_connect for details. |
{} |
Notes
This creates a new backend instance with saved args and kwargs, then calls reconnect and finally returns the newly created and connected backend instance.
Returns
| Name | Type | Description |
|---|---|---|
| BaseBackend | An instance of the backend |
create_catalog
create_catalog(self, name, /, *, force=False)
Create a new catalog.
schema to refer to database hierarchy.
A collection of table is referred to as a database. A collection of database is referred to as a catalog.
These terms are mapped onto the corresponding features in each backend (where available), regardless of the terminology the backend uses.
See the Table Hierarchy Concepts Guide for more info.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| name | str | Name of the new catalog. | required |
| force | bool | If False, an exception is raised if the catalog already exists. |
False |
create_database
create_database(self, name, /, *, catalog=None, force=False)
Create a database named name in catalog.
schema to refer to database hierarchy.
A collection of table is referred to as a database. A collection of database is referred to as a catalog.
These terms are mapped onto the corresponding features in each backend (where available), regardless of the terminology the backend uses.
See the Table Hierarchy Concepts Guide for more info.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| name | str | Name of the database to create. | required |
| catalog | str | None | Name of the catalog in which to create the database. If None, the current catalog is used. |
None |
| force | bool | If False, an exception is raised if the database exists. |
False |
create_table
create_table(self, name, /, obj=None, *, schema=None, database=None, temp=None, overwrite=False)
Create a new table.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| name | str | Name of the new table. | required |
| obj | ir.Table | pd.DataFrame | pa.Table | pl.DataFrame | pl.LazyFrame | None | An Ibis table expression or pandas table that will be used to extract the schema and the data of the new table. If not provided, schema must be given. |
None |
| schema | sch.SchemaLike | None | The schema for the new table. Only one of schema or obj can be provided. |
None |
| database | str | None | Name of the database where the table will be created, if not the default. To specify a location in a separate catalog, you can pass in the catalog and database as a string "catalog.database", or as a tuple of strings ("catalog", "database"). |
None |
| temp | bool | None | Whether a table is temporary or not. All created temp tables are “Global Temporary Tables”. They will be created in “tempdb.dbo” and will be prefixed with “##”. | None |
| overwrite | bool | Whether to clobber existing data. overwrite and temp cannot be used together with MSSQL. |
False |
Returns
| Name | Type | Description |
|---|---|---|
| Table | The table that was created. |
create_view
create_view(self, name, /, obj, *, database=None, overwrite=False)
Create a view from an Ibis expression.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| name | str | The name of the view to create. | required |
| obj | ir.Table | The Ibis expression to create the view from. | required |
| database | str | None | The database that the view should be created in. | None |
| overwrite | bool | If True, replace an existing view with the same name. |
False |
Returns
| Name | Type | Description |
|---|---|---|
| ir.Table | A table expression representing the view. |
disconnect
disconnect(self)
Disconnect from the backend.
drop_catalog
drop_catalog(self, name, /, *, force=False)
Drop a catalog with name name.
schema to refer to database hierarchy.
A collection of table is referred to as a database. A collection of database is referred to as a catalog.
These terms are mapped onto the corresponding features in each backend (where available), regardless of the terminology the backend uses.
See the Table Hierarchy Concepts Guide for more info.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| name | str | Catalog to drop. | required |
| force | bool | If False, an exception is raised if the catalog does not exist. |
False |
drop_database
drop_database(self, name, /, *, catalog=None, force=False)
Drop the database with name in catalog.
schema to refer to database hierarchy.
A collection of table is referred to as a database. A collection of database is referred to as a catalog.
These terms are mapped onto the corresponding features in each backend (where available), regardless of the terminology the backend uses.
See the Table Hierarchy Concepts Guide for more info.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| name | str | Name of the schema to drop. | required |
| catalog | str | None | Name of the catalog to drop the database from. If None, the current catalog is used. |
None |
| force | bool | If False, an exception is raised if the database does not exist. |
False |
drop_table
drop_table(self, name, /, *, database=None, force=False)
Drop a table from the backend.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| name | str | The name of the table to drop | required |
| database | tuple[str, str] | str | None | The database that the table is located in. | None |
| force | bool | If True, do not raise an error if the table does not exist. |
False |
drop_view
drop_view(self, name, /, *, database=None, force=False)
Drop a view from the backend.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| name | str | The name of the view to drop. | required |
| database | str | None | The database that the view is located in. | None |
| force | bool | If True, do not raise an error if the view does not exist. |
False |
execute
execute(self, expr, /, *, params=None, limit=None, **kwargs)
Execute an Ibis expression and return a pandas DataFrame, Series, or scalar.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Expr | Ibis expression to execute. | required |
| params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
| limit | int | str | None | An integer to effect a specific row limit. A value of None means no limit. The default is in ibis/config.py. |
None |
| kwargs | Any | Keyword arguments | {} |
Returns
| Name | Type | Description |
|---|---|---|
| DataFrame | Series | scalar | The result of the expression execution. |
from_connection
from_connection(cls, con, /)
Create an Ibis client from an existing connection to a MSSQL database.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| con | pyodbc.Connection | An existing connection to a MSSQL database. | required |
get_schema
get_schema(self, name, *, catalog=None, database=None)
has_operation
has_operation(cls, operation, /)
Return whether the backend supports the given operation.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| operation | type[ops.Value] | Operation type, a Python class object. | required |
insert
insert(self, name, /, obj, *, database=None, overwrite=False)
Insert data into a table.
schema to refer to database hierarchy.
A collection of table is referred to as a database. A collection of database is referred to as a catalog.
These terms are mapped onto the corresponding features in each backend (where available), regardless of whether the backend itself uses the same terminology.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| name | str | The name of the table to which data needs will be inserted | required |
| obj | pd.DataFrame | ir.Table | list | dict | The source data or expression to insert | required |
| database | str | None | Name of the attached database that the table is located in. For backends that support multi-level table hierarchies, you can pass in a dotted string path like "catalog.database" or a tuple of strings like ("catalog", "database"). |
None |
| overwrite | bool | If True then replace existing contents of table |
False |
list_catalogs
list_catalogs(self, *, like=None)
List existing catalogs in the current connection.
schema to refer to database hierarchy.
A collection of table is referred to as a database. A collection of database is referred to as a catalog.
These terms are mapped onto the corresponding features in each backend (where available), regardless of the terminology the backend uses.
See the Table Hierarchy Concepts Guide for more info.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| like | str | None | A pattern in Python’s regex format to filter returned catalog names. | None |
Returns
| Name | Type | Description |
|---|---|---|
| list[str] | The catalog names that exist in the current connection, that match the like pattern if provided. |
list_databases
list_databases(self, *, like=None, catalog=None)
List existing databases in the current connection.
schema to refer to database hierarchy.
A collection of table is referred to as a database. A collection of database is referred to as a catalog.
These terms are mapped onto the corresponding features in each backend (where available), regardless of the terminology the backend uses.
See the Table Hierarchy Concepts Guide for more info.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| like | str | None | A pattern in Python’s regex format to filter returned database names. | None |
| catalog | str | None | The catalog to list databases from. If None, the current catalog is searched. |
None |
Returns
| Name | Type | Description |
|---|---|---|
| list[str] | The database names that exist in the current connection, that match the like pattern if provided. |
list_tables
list_tables(self, *, like=None, database=None)
The table names that match like in the given database.
For some backends, the tables may be files in a directory, or other equivalent entities in a SQL database.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| like | str | None | A pattern in Python’s regex format. | None |
| database | tuple[str, str] | str | None | The database, or (catalog, database) from which to list tables. For backends that support a single-level table hierarchy, you can pass in a string like "bar". For backends that support multi-level table hierarchies, you can pass in a dotted string path like "catalog.database" or a tuple of strings like ("catalog", "database"). If not provided, the current database (and catalog, if applicable for this backend) is used. See the Table Hierarchy Concepts Guide for more info. |
None |
Returns
| Name | Type | Description |
|---|---|---|
| list[str] | The list of the table names that match the pattern like. |
Examples
This example uses the DuckDB backend, but the list_tables API works the same for other backends.
>>> import ibis
>>> con = ibis.duckdb.connect()
>>> foo = con.create_table("foo", schema=ibis.schema(dict(a="int")))
>>> con.list_tables()
['foo']
>>> bar = con.create_view("bar", foo)
>>> con.list_tables()
['bar', 'foo']
>>> con.create_database("my_database")
>>> con.list_tables(database="my_database")
[]
>>> con.raw_sql("CREATE TABLE my_database.baz (a INTEGER)")
<duckdb.duckdb.DuckDBPyConnection object at 0x...>
>>> con.list_tables(database="my_database")
['baz']raw_sql
raw_sql(self, query, **kwargs)
read_csv
read_csv(self, path, /, *, table_name=None, **kwargs)
Register a CSV file as a table in the current backend.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| path | str | Path | The data source. A string or Path to the CSV file. | required |
| table_name | str | None | An optional name to use for the created table. This defaults to a sequentially generated name. | None |
| **kwargs | Any | Additional keyword arguments passed to the backend loading function. | {} |
Returns
| Name | Type | Description |
|---|---|---|
| ir.Table | The just-registered table |
read_delta
read_delta(self, path, /, *, table_name=None, **kwargs)
Register a Delta Lake table in the current database.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| path | str | Path | The data source. Must be a directory containing a Delta Lake table. | required |
| table_name | str | None | An optional name to use for the created table. This defaults to a sequentially generated name. | None |
| **kwargs | Any | Additional keyword arguments passed to the underlying backend or library. | {} |
Returns
| Name | Type | Description |
|---|---|---|
| ir.Table | The just-registered table. |
read_json
read_json(self, path, /, *, table_name=None, **kwargs)
Register a JSON file as a table in the current backend.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| path | str | Path | The data source. A string or Path to the JSON file. | required |
| table_name | str | None | An optional name to use for the created table. This defaults to a sequentially generated name. | None |
| **kwargs | Any | Additional keyword arguments passed to the backend loading function. | {} |
Returns
| Name | Type | Description |
|---|---|---|
| ir.Table | The just-registered table |
read_parquet
read_parquet(self, path, /, *, table_name=None, **kwargs)
Register a parquet file as a table in the current backend.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| path | str | Path | The data source. | required |
| table_name | str | None | An optional name to use for the created table. This defaults to a sequentially generated name. | None |
| **kwargs | Any | Additional keyword arguments passed to the backend loading function. | {} |
Returns
| Name | Type | Description |
|---|---|---|
| ir.Table | The just-registered table |
reconnect
reconnect(self)
Reconnect to the database already configured with connect.
register_options
register_options(cls)
Register custom backend options.
rename_table
rename_table(self, old_name, new_name)
Rename an existing table.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| old_name | str | The old name of the table. | required |
| new_name | str | The new name of the table. | required |
sql
sql(self, query, /, *, schema=None, dialect=None)
Create an Ibis table expression from a SQL query.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| query | str | A SQL query string | required |
| schema | SchemaLike | None | The schema of the query. If not provided, Ibis will try to infer the schema of the query. | None |
| dialect | str | None | The SQL dialect of the query. If not provided, the backend’s dialect is assumed. This argument can be useful when the query is written in a different dialect from the backend. | None |
Returns
| Name | Type | Description |
|---|---|---|
| ir.Table | The table expression representing the query |
table
table(self, name, /, *, database=None)
Construct a table expression from the corresponding table in the backend.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| name | str | Table name | required |
| database | tuple[str, str] | str | None | The database, or (catalog, database) from which to get the table. For backends that support a single-level table hierarchy, you can pass in a string like "bar". For backends that support multi-level table hierarchies, you can pass in a dotted string path like "catalog.database" or a tuple of strings like ("catalog", "database"). If not provided, the current database (and catalog, if applicable for this backend) is used. See the Table Hierarchy Concepts Guide for more info. |
None |
Returns
| Name | Type | Description |
|---|---|---|
| Table | Table expression |
Examples
>>> import ibis
>>> backend = ibis.duckdb.connect()Get the “foo” table from the current database (and catalog, if applicable for this backend):
>>> backend.table("foo")Get the “foo” table from the “bar” database (in DuckDB’s language they would say the “bar” schema, in SQL this would be "bar"."foo")
>>> backend.table("foo", database="bar")Get the “foo” table from the “bar” database, within the “baz” catalog (in DuckDB’s language they would say the “bar” schema, and “baz” database, in SQL this would be "baz"."bar"."foo")
>>> backend.table("foo", database=("baz", "bar"))to_csv
to_csv(self, expr, /, path, *, params=None, **kwargs)
Write the results of executing the given expression to a CSV file.
This method is eager and will execute the associated expression immediately.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Table | The ibis expression to execute and persist to CSV. | required |
| path | str | Path | The data source. A string or Path to the CSV file. | required |
| params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
| kwargs | Any | Additional keyword arguments passed to pyarrow.csv.CSVWriter | {} |
| https | required |
to_delta
to_delta(self, expr, /, path, *, params=None, **kwargs)
Write the results of executing the given expression to a Delta Lake table.
This method is eager and will execute the associated expression immediately.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Table | The ibis expression to execute and persist to Delta Lake table. | required |
| path | str | Path | The data source. A string or Path to the Delta Lake table. | required |
| params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
| kwargs | Any | Additional keyword arguments passed to deltalake.writer.write_deltalake method | {} |
to_json
to_json(self, expr, /, path, **kwargs)
Write the results of expr to a json file of [{column -> value}, …] objects.
This method is eager and will execute the associated expression immediately.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Table | The ibis expression to execute and persist to Delta Lake table. | required |
| path | str | Path | The data source. A string or Path to the Delta Lake table. | required |
| kwargs | Any | Additional, backend-specifc keyword arguments. | {} |
to_pandas
to_pandas(self, expr, /, *, params=None, limit=None, **kwargs)
Execute an Ibis expression and return a pandas DataFrame, Series, or scalar.
This method is a wrapper around execute.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Expr | Ibis expression to execute. | required |
| params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
| limit | int | str | None | An integer to effect a specific row limit. A value of None means no limit. The default is in ibis/config.py. |
None |
| kwargs | Any | Keyword arguments | {} |
to_pandas_batches
to_pandas_batches(self, expr, /, *, params=None, limit=None, chunk_size=1000000, **kwargs)
Execute an Ibis expression and return an iterator of pandas DataFrames.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Expr | Ibis expression to execute. | required |
| params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
| limit | int | str | None | An integer to effect a specific row limit. A value of None means no limit. The default is in ibis/config.py. |
None |
| chunk_size | int | Maximum number of rows in each returned DataFrame batch. This may have no effect depending on the backend. |
1000000 |
| kwargs | Any | Keyword arguments | {} |
Returns
| Name | Type | Description |
|---|---|---|
| Iterator[pd.DataFrame] | An iterator of pandas DataFrames. |
to_parquet
to_parquet(self, expr, /, path, *, params=None, **kwargs)
Write the results of executing the given expression to a parquet file.
This method is eager and will execute the associated expression immediately.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Table | The ibis expression to execute and persist to parquet. | required |
| path | str | Path | The data source. A string or Path to the parquet file. | required |
| params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
| **kwargs | Any | Additional keyword arguments passed to pyarrow.parquet.ParquetWriter | {} |
| https | required |
to_parquet_dir
to_parquet_dir(self, expr, /, directory, *, params=None, **kwargs)
Write the results of executing the given expression to a parquet file in a directory.
This method is eager and will execute the associated expression immediately.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Table | The ibis expression to execute and persist to parquet. | required |
| directory | str | Path | The data source. A string or Path to the directory where the parquet file will be written. | required |
| params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
| **kwargs | Any | Additional keyword arguments passed to pyarrow.dataset.write_dataset | {} |
| https | required |
to_polars
to_polars(self, expr, /, *, params=None, limit=None, **kwargs)
Execute expression and return results in as a polars DataFrame.
This method is eager and will execute the associated expression immediately.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Expr | Ibis expression to export to polars. | required |
| params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
| limit | int | str | None | An integer to effect a specific row limit. A value of None means no limit. The default is in ibis/config.py. |
None |
| kwargs | Any | Keyword arguments | {} |
Returns
| Name | Type | Description |
|---|---|---|
| dataframe | A polars DataFrame holding the results of the executed expression. |
to_pyarrow
to_pyarrow(self, expr, /, *, params=None, limit=None, **kwargs)
Execute expression to a pyarrow object.
This method is eager and will execute the associated expression immediately.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Expr | Ibis expression to export to pyarrow | required |
| params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
| limit | int | str | None | An integer to effect a specific row limit. A value of None means no limit. The default is in ibis/config.py. |
None |
| kwargs | Any | Keyword arguments | {} |
Returns
| Name | Type | Description |
|---|---|---|
| result | If the passed expression is a Table, a pyarrow table is returned. If the passed expression is a Column, a pyarrow array is returned. If the passed expression is a Scalar, a pyarrow scalar is returned. |
to_pyarrow_batches
to_pyarrow_batches(self, expr, /, *, params=None, limit=None, chunk_size=1000000, **_)
Execute expression and return an iterator of PyArrow record batches.
This method is eager and will execute the associated expression immediately.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Expr | Ibis expression to export to pyarrow | required |
| limit | int | str | None | An integer to effect a specific row limit. A value of None means “no limit”. The default is in ibis/config.py. |
None |
| params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
| chunk_size | int | Maximum number of rows in each returned record batch. | 1000000 |
Returns
| Name | Type | Description |
|---|---|---|
| RecordBatchReader | Collection of pyarrow RecordBatchs. |
to_torch
to_torch(self, expr, /, *, params=None, limit=None, **kwargs)
Execute an expression and return results as a dictionary of torch tensors.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Expr | Ibis expression to execute. | required |
| params | Mapping[ir.Scalar, Any] | None | Parameters to substitute into the expression. | None |
| limit | int | str | None | An integer to effect a specific row limit. A value of None means no limit. |
None |
| kwargs | Any | Keyword arguments passed into the backend’s to_torch implementation. |
{} |
Returns
| Name | Type | Description |
|---|---|---|
| dict[str, torch.Tensor] | A dictionary of torch tensors, keyed by column name. |
truncate_table
truncate_table(self, name, /, *, database=None)
Delete all rows from a table.
schema to refer to database hierarchy.
A collection of tables is referred to as a database. A collection of database is referred to as a catalog. These terms are mapped onto the corresponding features in each backend (where available), regardless of whether the backend itself uses the same terminology.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| name | str | Table name | required |
| database | str | None | Name of the attached database that the table is located in. For backends that support multi-level table hierarchies, you can pass in a dotted string path like "catalog.database" or a tuple of strings like ("catalog", "database"). |
None |