Diffuse glow of red, green, and blue LEDs embedded in silicone

Embedded LEDs For Soft Robots Made From Silicone

Over on their YouTube channel [Science Buddies] shows us how to embed LEDs in soft robots. Soft robots can be made entirely or partially from silicone. In the video you see an example of a claw-like gripper made entirely from silicone. You can also use silicone to make “skin”. The skin can stretch, and the degree of stretch can be measured by means of an embedded sensor made from stretchy conductive fabric.

As silicone is translucent if you embed LEDs within it when illuminated they will emit diffuse light. Stranded wire is best for flexibility and the video demonstrates how to loop the wires back and forth into a spring-like shape for expansion and contraction along the axis which will stretch. Or you can wire in the LEDs without bending the wires if you run them along an axis which won’t stretch.

The video shows how to make silicone skin by layering two-part mixture into a mold. A base layer of silicone is followed by a strip of conductive fabric and the LED with its wires. Then another layer of silicone is applied to completely cover and seal the fabric and LED in place. Tape is used to hold the fabric and LED in place while the final layer of silicone is applied.

When the LEDs are embedded in silicone there will be reduced airflow to facilitate cooling so be sure to use a large series resistor to limit the current through the LED as much as possible to prevent overheating. A 1K series resistor would be a good value to try first. If you need the LED to be brighter you will need to decrease the resistance, but make sure you’re not generating too much heat when you do so.

If you’re interested in stretchy circuits you might also like to read about flexible circuits built on polyimide film.

Continue reading “Embedded LEDs For Soft Robots Made From Silicone”

Twelve pink tentacles are wrapped around a small, green succulent plant. The leaves seem relatively undisturbed. They are dangling from brass and white plastic pressure fittings attached to a brass circle.

Tentacle Robot Wants To Hold You Gently

Human hands are remarkable pieces of machinery, so it’s no wonder many robots are designed after their creators. The amount of computation required to properly attenuate the grip strength and position of a hand is no joke though, so what if you took a tentacular approach to grabbing things instead?

Inspired by ocean creatures, researchers found that by using a set of pneumatically-controlled tentacles, they could grasp irregular objects reliably and gently without having to faff about with machine learning or oodles of sensors. The tentacles can wrap around the object itself or intertwine with each other to encase parts of an object in its gentle grasp.

The basic component of the device is 12 sections “slender elastomeric filament” which dangle at gauge pressure, but begin to curl as pressure is applied up to 172 kPa. All of the 300 mm long segments run on the same pressure source and are the same size, but adding multiple sized filaments or pressure sources might be useful for certain applications.

We wonder how it would do feeding a fire or loading a LEGO train with candy? We also have covered how to build mechanical tentacles and soft robots, if that’s more your thing.

Continue reading “Tentacle Robot Wants To Hold You Gently”

Möbius String Robot Goes Round And Round

While it doesn’t look like a traditional robot, the hydrogel robot from [Zi Liang Wu] forms a möbius strip and can be activated by light. They also experimented with shaping the hydrogels as a Seifert ribbon.

The key is that the hydrogels contain gold nanoparticles. Light heats the gold particles and this causes the hydrogels to move. The connections between the strips of hydrogels causes them to move in predictable ways. You can see a video about the experiments below.

These robots aren’t going to be for warehouse or factory work. But they can do tasks like collecting plastic beads, something difficult for conventional robots to do. They also hope to demonstrate that these soft robots could work in the body for taking samples or delivering a drug, although it isn’t apparent how light would get to them inside your body.

The dark side of the material tends to turn towards the light. The continuous loop structure means it never runs to the end of its travel. Watching it move on a string is pretty impressive.

Crawling and slithering robots may be the answer for certain specialized applications. After all, it works well in nature.

Continue reading “Möbius String Robot Goes Round And Round”

Tentacle Robot Is Like An Elephant Trunk

It sounds like bad science fiction or anime, but researchers are creating helical-artificial fibrous muscle structured tubular soft actuators. What? Oh, tentacle robot arms. Got it.

The researchers at Westlake University in China found inspiration in elephant trunks. Elephant trunks are entirely devoid of bone but use a tubular muscle structure. By deforming certain muscles, complex motion is possible. After understanding how they work, it was just a matter of making a similar structure from artificial muscle fibers.

The resulting actuator uses smart materials and has eleven different morphing modes — more than other attempts to build similar structures. The fabrication sounds difficult, it involves stretching chemically reactive materials over a form with specific winding angles.

The fibers react to light. Depending on the configuration, the stalk can seek light or avoid light. We were hoping the “Materials and Methods” section would give some ideas of how to do this ourselves, but it looks like you’d need some uncommon liquid crystal materials, and you’d also have to work out some of the details.

Animatronic tentacles are usually complex cable affairs. However, we have seen some soft robots in the past, too.

Underwater Crawling Soft Robot Stays In Shape

When you think of robots that were modeled after animals, a brittle star is probably not the first species that comes to mind. Still, this is the animal that inspired [Zach J. Patterson] and his research colleagues from Carnegie Mellon University for their underwater crawling robot PATRICK.

PATRICK is a soft robot made from molded silicone. Each of his five limbs contains several shape memory alloy (SMA) springs which can be contracted through Joule heating thereby causing the limbs to bend. The robot’s control board is sending and receiving commands via Bluetooth Low Energy from a nearby computer. To control PATRICK’s motion the researchers constructed a closed-loop system where an offboard OpenCV based camera system is constantly tracking the robot. As shown in the video below with an average velocity of 1 cm/s, PATRICK’s movement is a bit sluggish but the system is supposedly very robust against uncertainties in the environment.

In the future [Zach J. Patterson et al.] would like to improve their design by giving the robot the ability to grasp objects. Ultimately, also the offboard camera should be replaced with onboard sensors so that PATRICK can navigate autonomously.

Soft robots like artificial jellyfish are especially useful underwater and sometimes almost cross the boundary to organic life.

Continue reading “Underwater Crawling Soft Robot Stays In Shape”

This 3D Printer Is Soft On Robots

It always seems to us that the best robots mimic things that are alive. For an example look no further than the 3D printed mesh structures from researchers at North Carolina State University. External magnetic fields make the mesh-like “robot” flex and move while floating in water. The mechanism can grab small objects and carry something as delicate as a water droplet.

The key is a viscous toothpaste-like ink made from silicone microbeads, iron carbonyl particles, and liquid silicone. The resulting paste is amenable to 3D printing before being cured in an oven. Of course, the iron is the element that makes the thing sensitive to magnetic fields. You can see several videos of it in action, below.

Continue reading “This 3D Printer Is Soft On Robots”

Walk It Off, Healing Robots

For many of us, our first robots, or technical projects, were flimsy ordeals built with cardboard, duct tape, and high hopes. Most of us grow past that scene, and we learn to work supplies which require more than a pair of kitchen scissors. Researchers at Carnegie Mellon University and Iowa State University have made a material which goes beyond durable, it can heal itself when wounded. To a small robot, a standard hole puncher is a dire assailant, but the little guy in the video after the break keeps hopping around despite a couple of new piercings.

The researcher’s goal is to integrate this substance into bio-inspired robots which may come to harm in the field. Fish-like robots could keep swimming after a brush with a bit of coral or a curious predator. Robot snakes could keep slithering after a fall or a gravel road.

Of course, robotic simulacrums are not the only ones who can benefit from healing circuitry. Satellites are prey to punctures from errant space debris.

Continue reading “Walk It Off, Healing Robots”