BornHack is a week-long summer hacker camp in a forest on the Danish island of Fyn, that consistently delivers a very pleasant experience for those prepared to make the journey. This year’s version was the tenth iteration of the camp and it finished a week ago, and having returned exhausted and dried my camping gear after a Biblical rainstorm on the last day, it’s time to take a look at the badges. In case you are surprised by the plural, indeed, this event had not one badge but two. Last year’s badge suffered some logistical issues and arrived too late for the camp, so as a special treat it was there alongside the 2025 badge for holders of BornHack 2024 tickets. So without further ado, it’s time to open the pack for Hackaday and see what fun awaits us. Continue reading “Two For The Price Of One: BornHack 2024 And 2025 Badges”
LoRa
104 Articles
Hands On: The Hacker Pager
It should come as no surprise that the hacker community has embraced the Meshtastic project. It’s got a little bit of everything we hold dear: high quality open source software, fantastic documentation, a roll-your-own hardware ethos, and just a dash of counterculture. An off-grid communications network cobbled together from cheap parts, some of which being strategically hidden within the urban sprawl by rogue operators, certainly sounds like the sort of thing you’d read about it in a William Gibson novel.
But while the DIY nature of Meshtastic is one of its most endearing features for folks like us, it can also be seen as one of its weak spots. Right now, the guidance for those looking to get started is to pick a compatible microcontroller development board, 3D print a case for it, screw on an antenna from AliExpress, flash your creation with the latest firmware, and then spend some quality time with the documentation and configuration tools to actually get it on the air. No great challenge for the average Hackaday reader, but a big ask for the weekend adventurer that’s just looking for a way to keep in touch with their friends while camping.
Quality hardware that offers a turn-key experience will be critical to elevating Meshtastic from a hobbyist’s pastime to something that could actually be fielded for applications such as search and rescue. Plus, let’s be honest, even those of us who like to put together our own gadgets can appreciate a more consumer-oriented piece of hardware from time to time. Especially if that hardware happens to be open source and designed to empower the user rather than hold them back.
Enter the Hacker Pager from exploitee.rs. As the name implies, it’s still very much a device intended for hackers — a piece of hardware designed for the halls of DEF CON rather than trekking through the wilderness. But it’s also an important step towards a new generation of Meshtastic hardware that meets the high standard of quality set by the software itself.
Video Cable Becomes Transmitter With TEMPEST-LoRa
EFI from cables is something every ham loves to hate. What if you modulated, that, though, using an ordinary cable as an antenna? If you used something ubiquitous like a video cable, you might have a very interesting exploit– which is exactly what [Xieyang Sun] and their colleagues have done with TEMPEST-LoRa, a technique to encode LoRa packets into video files.
The concept is pretty simple: a specially-constructed video file contains information to be broadcast via LoRa– the graphics card and the video cable serve as the Tx, and the Rx is any LoRa module. Either VGA or HDMI cables can be used, though the images to create the LoRa signal are obviously going to differ in each case. The only restriction is that the display resolution must be 1080×1920@60Hz, and the video has to play fullscreen. Fullscreen video might make this technique easy to spot if used in an exploit, but on the other hand, the display does not have to be turned on at the time of transmission. If employed by blackhats, one imagines syncing this to power management so the video plays whenever the screen blanks.

According to the pre-print, a maximum transmission distance of 81.7m was achieved, and at 21.6 kbps. That’s not blazing fast, sure, but transmission out of a totally air-gapped machine even at dialup speeds is impressive. Code is on the GitHub under an MIT license, though [Xieyang Sun] and the team are white hats, so they point out that it’s provided for academic use. There is a demo video, but as it is on bilbili we don’t have an easy way to embed it. The work has been accepted to the ACM Conference on Computer and Communications Security (2025), so if you’re at the event in Taiwan be sure to check it out.
We’ve seen similar hacks before, like this one that uses an ethernet cable as an antenna. Getting away from RF, others have used fan noise, or even the once-ubiquitous HDD light. (And here we thought casemakers were just cheaping out when they left those off– no, it’s security!)
Thanks to [Xieyang Sun] for the tip! We’ll be checking the tips line for word from you, just as soon as we finish wrapping ferrites around all our cables.
2025 Pet Hacks Contest: Cat At The Door
This Pet Hacks Contest entry from [Andrea] opens the door to a great collaboration of sensors to solve a problem. The Cat At The Door project’s name is a bit of a giveaway to its purpose, but this project has something for everyone, from radar to e-ink, LoRa to 3D printing. He wanted a sensor to watch the door his cats frequent and when one of his cats were detected have an alert sent to where he is in the house
There are several ways you can detect a cat, in this project [Andrea] went with mmWave radar, and this is ideal for sensing a cat as it allows the sensor to sit protected inside, it works day or night, and it doesn’t stop working should the cat stand still. In his project log he has a chapter going into what he did to dial in the settings on the LD2410C radar board.
How do you know if you’re detecting your cat, some other cat, a large squirrel, or a small child? It helps if you first give your cats a MAC address, in the form of a BLE tag. Once the radar detects presence of a suspected cat, the ESP32-S3 starts looking over Bluetooth, and if a known tag is found it will identify which cat or cats are outside waiting.
Once the known cat has been identified, it’s time to notify [Andrea] that his cat is waiting for his door opening abilities. To do this he selected an ESP32 board that includes a SX1262 LoRa module for communicating with the portable notification device. This battery powered device has a low power e-paper display showing you which cat, as well as an audio buzzer to help alert you.
To read more details about this project head over to the GitHub page to check out all the details. Including a very impressive 80 page step-by-step guide showing you step by step how to make your own. Also, be sure to check out the other entries into the 2025 Pet Hacks Contest.
2025 Pet Hacks Contest: Loko Tracks Fido With LoRa And GPS
Some projects start as hacks, and end as products — that’s the case for [Akio Sato]’s project Loko, the LoRa/GPS tracker that was entered in our 2025 Pet Hacks Contest. The project dates all the way back to 2019 on Hackaday.io, and through its logs you can see its evolution up to the announcement that Loko is available from SeeedStudio.
It’s not a device necessarily limited to pets. In fact, the original use case appears to have been a backup locator beacon for lost drones. But it’s still a good fit for the contest none-the-less: at 12 grams, the tiny tracking device won’t bother even the most diminutive of pups, and will fit on any collar at only 30 mm x 23 mm. The “ground station” that pairs with your phone is a bit bigger, of course, but unless you have a Newfoundlander or a St. Bernard you’re likely bigger than fido. The devices use LoRa to provide a range up to 15 km — maybe better if you can loop them into a LoRaWAN. Depending on how often you pin the tracker, it can apparently last for as long as 270 days, which we really hope you won’t need to track a missing pet.
The hardware is based around Seeed’s Wio-E5 LoRa chip, which packages an STM32 with a LoRA radio. The firmware is written in MicroPython, and everything is available via GitHub under the MIT license. Though the code for the mobile app that interfaces with that hardware doesn’t appear to be in the repository at the moment. (There are folders, but they’re disappointingly empty.) The apps are available free on the iOS App Store and Google Play, however.
There’s still plenty of time to submit your own hacks to the Pet Hacks Contest, so please do! You have until May 10th, so if you haven’t started yet, it’s not too late to get hacking.
As The World Burns, At Least You’ll Have Secure Messaging
There’s a section of our community who concern themselves with the technological aspects of preparing for an uncertain future, and for them a significant proportion of effort goes in to communication. This has always included amateur radio, but in more recent years it has been extended to LoRa. To that end, [Bertrand Selva] has created a LoRa communicator, one which uses a Pi Pico, and delivers secure messaging.
The hardware is a rather-nice looking 3D printed case with a color screen and a USB A port for a keyboard, but perhaps the way it works is more interesting. It takes a one-time pad approach to encryption, using a key the same length as the message. This means that an intercepted message is in effect undecryptable without the key, but we are curious about the keys themselves.
They’re a generated list of keys stored on an SD card with a copy present in each terminal on a particular net of devices, and each key is time-specific to a GPS derived time. Old keys are destroyed, but we’re interested in how the keys are generated as well as how such a system could be made to survive the loss of one of those SD cards. We’re guessing that just as when a Cold War spy had his one-time pad captured, that would mean game over for the security.
So if Meshtastic isn’t quite the thing for you then it’s possible that this could be an alternative. As an aside we’re interested to note that it’s using a 433 MHz LoRa module, revealing the different frequency preferences that exist between enthusiasts in different countries.
Continue reading “As The World Burns, At Least You’ll Have Secure Messaging”
Get Into Meshtastic On The Cheap With This Tiny Node Kit
There’s been a lot of buzz about Meshtastic lately, and with good reason. The low-power LoRa-based network has a ton of interesting use cases, and as with any mesh network, the more nodes there are, the better it works for everyone. That’s why we’re excited by this super-affordable Meshtastic kit that lets you get a node on the air for about ten bucks.
The diminutive kit, which consists of a microcontroller and a LoRa module, has actually been available from the usual outlets for a while. But [concretedog] has been deep in the Meshtastic weeds lately, and decided to review its pros and cons. Setup starts with flashing Meshtastic to the XIAO ESP32-S3 microcontroller and connecting the included BLE antenna. After that, the Wio-SX1262 LoRa module is snapped to the microcontroller board via surface-mount connectors, and a separate LoRa antenna is connected. Flash the firmware (this combo is supported by the official web flasher), and you’re good to go.
What do you do with your new node? That’s largely up to you, of course. Most Meshtastic users seem content to send encrypted text messages back and forth, but as our own [Jonathan Bennett] notes, a Meshtastic network could be extremely useful for emergency preparedness. Build a few of these nodes, slap them in a 3D printed box, distribute them to willing neighbors, and suddenly you’ve got a way to keep connected in an emergency, no license required.