Render of a simple clockwork orrery

Planetary Poetry With A Tiny Digital Core

Some hacks just tickle the brain in a very particular way. They’re, for a change, not overly engineered; they’re just elegant, anachronistic, and full of mischief. That’s exactly what [Frans] pulls off with A Gentleman’s Orrery, a tiny, simple clockwork solar system. Composed of shiny brass and the poise of 18th-century craftsmanship, it hides a modern secret: there’s barely any clockwork inside. You can build it yourself.

Mechanism of a simple clockwork orreryPeek behind the polished face and you’ll find a mechanical sleight of hand. This isn’t your grandfather’s gear-laden planetarium. Instead of that, it operates on a pared-down system that relies on a stepper motor, driving planetary movement through a 0.8 mm axle nested inside a 1 mm brass tube. That micro-mechanical coupling, aided by a couple of bevel gears, manages to rotate the Moon just right, including its orientation. Most of the movement relies on clever design, not gear cascades. The real wizardry happens under the hood: a 3D-printed chassis cradles an ESP32-C6, a TTP223 capacitive touch module, STSPIN220 driver, and even a reed switch with magnetic charging.

You can even swap out the brass for a stone shell where the full moon acts as the touch control. It’s tactile, it’s poetic, and therefore, a nice hack for a weekend project. To build it yourself, read [Frans]’ Instructable.

Continue reading “Planetary Poetry With A Tiny Digital Core”

Making A Treadmill Into A 3D Printer

A treadmill-style bed can be a great addition to a 3D printer. It allows prints to be shifted out of the build volume as printing continues, greatly increasing the size and flexibility of what you can print. But [Ivan Miranda] and [Jón Schone] had a question. Instead of making a treadmill to suit a 3D printer, what if you just built a 3D printer on top of a full-size treadmill?

The duo sourced a piece of real gym equipment for this build. They then set about building a large-scale 3D printer on top of this platform. The linear rails were first mounted on to the treadmill’s frame, followed by a gantry for the print head itself and mounts for the necessary stepper motors. The printer also gained a custom extra-large extruder to ensure a satisfactory print speed that was suitable for the scale of the machine. From there, it was largely a case of fitting modules and running cables to complete the printer.

Soon enough, the machine was printing hot plastic on the treadmill surface, thereby greatly expanding the usable print volume. It’s a little tricky to wrap your head around at first, but when you see it in action, it’s easy to see the utility of a build like this, particularly at large scale. [Ivan] demonstrated this by printing a massive girder over two meters long.

We started seeing attempts at building a belt-equipped “infinite build volume” printer back in 2017, and it took awhile before the concept matured enough to be practical. Even today, they remain fairly uncommon.

Continue reading “Making A Treadmill Into A 3D Printer”

3D Filament lizards show decomposable joints

Sustainable 3D Prints With Decomposable Filaments

What if you could design your 3D print to fall apart on purpose? That’s the curious promise of a new paper from CHI 2025, which brings a serious hacker vibe to the sustainability problem of multi-material 3D printing. Titled Enabling Recycling of Multi-Material 3D Printed Objects through Computational Design and Disassembly by Dissolution, it proposes a technique that lets complex prints disassemble themselves via water-soluble seams. Just a bit of H2O is needed, no drills or pliers.

At its core, this method builds dissolvable interfaces between materials like PLA and TPU using water-soluble PVA. Their algorithm auto-generates jointed seams (think shrink-wrap meets mushroom pegs) that don’t interfere with the part’s function. Once printed, the object behaves like any ordinary 3D creation. But at end-of-life, a water bath breaks it down into clean, separable materials, ready for recycling. That gives 90% material recovery, and over 50% reduction in carbon emissions.

This is the research – call it a very, very well documented hack – we need more of. It’s climate-conscious and machine-savvy. If you’re into computational fabrication or environmental tinkering, it’s worth your time. Hats off to [Wen, Bae, and Rivera] for turning what might otherwise be considered a failure into a feature.

Continue reading “Sustainable 3D Prints With Decomposable Filaments”

This Extra-Large, Two-Stage Fume Extractor Really Sucks

Solder fumes are not nice on the lungs; nor are fumes from superglue, epoxy, or a whole mess of other things we often find ourselves using on the bench. Some people might be able to go the fume hood route to toss that all outside, but for the rest of us, there’s fume extractors. [Raph] has produced an extra-large, carbon-filtering, two-stage fume extractor that by all accounts really sucks — it is effective at hoovering up solder fumes up to 10″ from its inlet.

Photo of fume extractor
Note the 18V tool battery in the base. That’ll go for a bit.

Even better, [Raph] built a battery box for an 18 V cordless tool battery, and broke out banana plugs so this doubles as a variable power supply via a cheap LM2596 based DC-DC converter. It also serves as a speed controller for the fans, which makes us wonder if you can adjust the PSU output and the fan speed independently…

Maximum suckage is achieved through careful baffle design. Check out the blog to see the trial-and-error process at work. Of course, having a 200 mm axial fan and 140 mm blower fan front and rear is going to move some air no matter what. Which is required to get air flow through the 38 mm thick activated carbon filter that should scrub all nasties quite nicely. We aren’t filtration experts but we can agree with [Raph]’s estimate that it will last “a while”.

If you want to roll your own, all of the STEP files are on GitHub, and [Raph]’s blog has an excellent step-by-step build guide. We’ve seen other hacks from [Raph] before, from his dovetailed modular breadboard to the machine that shaped his bed and automation for his camper van.

Move Over, Lithophane: 3D Printed 3D Photos With Gaussian Splats

If you had asked us yesterday “How do you 3D Print a Photo”, we would have said “well, that’s easy, do a lithophane”– but artist, hacker and man with a very relaxing voice [Wyatt Roy] has a much more impressive answer: Gaussian splats, rendered in resin.

Gaussian splats are a 3D scanning technique aimed at replicating a visual rather than geometry, like the mesh-based 3D-scanning we usually see on Hackaday. Using photogrammetry, a point cloud is generated with an associated 3D Gaussian function describing the colour at that point. Blend these together, and you can get some very impressive photorealistic 3D environments. Of course, printing a Gaussian smear of colour isn’t trivial, which is where the hacking comes in.

Continue reading “Move Over, Lithophane: 3D Printed 3D Photos With Gaussian Splats”

3D Printed Downspout Makes Life Just A Little Nicer

Sometimes, a hack solves a big problem. Sometimes, it’s just to deal with something that kind of bugs you. This hack from [Dillan Stock] is in the latter category, replacing an ugly, redundant downspout with an elegant 3D printed pipe.

As [Dillan] so introspectively notes, this was not something that absolutely required a 3D print, but “when all you have a hammer, everything is a nail, and 3D printing is [his] hammer.” We can respect that, especially when he hammers out such a lovely print.

By modeling this section of his house in Fusion 360, he could produce an elegantly swooping loft to combine the outflow into one downspout. Of course the assembly was too big to print at once, but any plumber will tell you that ABS welds are waterproof. Paint and primer gets it to match the house and hopefully hold up to the punishing Australian sun.

The video, embedded below, is a good watch and a reminder than not every project has to be some grand accomplishment. Sometimes, it can be as simple as keeping you from getting annoyed when you step into your backyard.

We’ve seen rainwater collection hacks before; some of them a lot less orthodox. Of course when printing with ABS like this, one should always keep in mind the ever-escalating safety concerns with the material.

Continue reading “3D Printed Downspout Makes Life Just A Little Nicer”

Printable Pegboard PC Shows Off The RGB

Sometimes it seems odd that we would spend hundreds (or thousands) on PC components that demand oodles of airflow, and stick them in a little box, out of sight. The fine folks at Corsair apparently agree, because they’ve released files for an open-frame pegboard PC case on Printables.

According to the write-up on their blog, these prints have held up just fine with ordinary PLA– apparently there’s enough airflow around the parts that heat sagging isn’t the issue we would have suspected. ATX and ITX motherboards are both supported, along with a few power supply form factors. If your printer is smaller, the ATX mount is per-sectioned for your convenience. Their GPU brackets can accommodate beefy dual- and triple-slot models. It’s all there, if you want to unbox and show off your PC build like the work of engineering art it truly is.

Of course, these files weren’t released from the kindness of Corsair’s corporate heart– they’re meant to be used with fancy pegboard desks the company also sells. Still to their credit, they did release the files under a CC4.0-Attribution-ShareAlike license. That means there’s nothing stopping an enterprising hacker from remixing this design for the ubiquitous SKÅDIS or any other perfboard should they so desire.

We’ve covered artful open-cases before here on Hackaday, but if you prefer to hide the expensive bits from dust and cats, this mid-century box might be more your style. If you’d rather no one know you own a computer at all, you can always do the exact opposite of this build, and hide everything inside the desk.