Do you use a spell checker? We’ll guess you do. Would you use a button that just said “correct all spelling errors in document?” Hopefully not. Your word processor probably doesn’t even offer that as an option. Why? Because a spellchecker will reject things not in its dictionary (like Hackaday, maybe). It may guess the wrong word as the correct word. Of course, it also may miss things like “too” vs. “two.” So why would you just blindly accept AI code review? You wouldn’t, and that’s [Bill Mill’s] point with his recent tool made to help him do better code reviews.
He points out that he ignores most of the suggestions the tool outputs, but that it has saved him from some errors. Like a spellcheck, sometimes you just hit ignore. But at least you don’t have to check every single word.
Reachy Mini is a kit for a compact, open-source robot designed explicitly for AI experimentation and human interaction. The kit is available from Hugging Face, which is itself a repository and hosting service for machine learning models. Reachy seems to be one of their efforts at branching out from pure software.
Our guess is that some form of Stewart Platform handles the head movement.
Reachy Mini is intended as a development platform, allowing people to make and share models for different behaviors, hence the Hugging Face integration to make that easier. On the inside of the full version is a Raspberry Pi, and we suspect some form of Stewart Platform is responsible for the movement of the head. There’s also a cheaper (299 USD) “lite” version intended for tethered use, and a planned simulator to allow development and testing without access to a physical Reachy at all.
Reachy has a distinctive head and face, so if you’re thinking it looks familiar that’s probably because we first covered Reachy the humanoid robot as a project from Pollen Robotics (Hugging Face acquired Pollen Robotics in April 2025.)
The idea behind the smaller Reachy Mini seems to be to provide a platform to experiment with expressive human communication via cameras and audio, rather than to be the kind of robot that moves around and manipulates objects.
The video shows a neural network comprised of eight artificial neurons assembled on breadboards used to control a fully autonomous toy truck. The truck is equipped with four proximity sensors, one front, one front left, one front right, and one rear. The sensor readings from the truck are transmitted to the artificial brain which determines which way to turn and whether to go forward or backward. The inputs to each neuron, the “synapses”, can be excitatory to increase the firing rate or inhibitory to decrease the firing rate. The output commands are then returned wirelessly to the truck via a hacked remote control.
This particular type of neural network is called a Spiking Neural Network (SNN) which uses discrete events, called “spikes”, instead of continuous real-valued activations. In these types of networks when a neuron fires matters as well as the strength of the signal. There are other videos on this channel which go into more depth on these topics.
The name of this experimental vehicle is the GSN SNN 4-8-24-2 Autonomous Vehicle, which is short for: Global Science Network Spiking Neural Network 4 Inputs 8 Neurons 24 Synapses 2 Degrees of Freedom Output. The circuitry on both the vehicle and the breadboards is littered with LEDs which give some insight into how it all functions.
Machine learning and neural nets can be pretty handy, and people continue to push the envelope of what they can do both in high end server farms as well as slower systems. At the extreme end of the spectrum is [ExploratoryStudios]’s Hermes Optimus Neural Net for a TI-84 Plus Silver Edition.
This neural net is setup as an autocorrect system that can take four character inputs and match them to a library of twelve words. That’s not a lot, but we’re talking about a device with 24 kB of RAM, so the little machine is doing its best. Perhaps more interesting than any practical output is the puzzle solving involved in getting this to work within the memory constraints.
The neural net “employs a feedforward neural network with a precisely calibrated 4-60-12 architecture and sigmoid activation functions.” This leads to an approximate 85% accuracy being able to identify and correct the given target words. We appreciate the readout of the net’s confidence as well which is something that seems to have gone out the window with many newer “AI” systems.
Recently AI risk and benefit evaluation company METR ran a randomized control test (RCT) on a gaggle of experienced open source developers to gain objective data on how the use of LLMs affects their productivity. Their findings were that using LLM-based tools like Cursor Pro with Claude 3.5/3.7 Sonnet reduced productivity by about 19%, with the full study by [Joel Becker] et al. available as PDF.
This study was also intended to establish a methodology to assess the impact from introducing LLM-based tools in software development. In the RCT, 16 experienced open source software developers were given 246 tasks, after which their effective performance was evaluated.
A large focus of the methodology was on creating realistic scenarios instead of using canned benchmarks. This included adding features to code, bug fixes and refactoring, much as they would do in the work on their respective open source projects. The observed increase in the time it took to complete tasks with the LLM’s assistance was found to be likely due to a range of factors, including over-optimism about the LLM tool capabilities, LLMs interfering with existing knowledge on the codebase, poor LLM performance on large codebases, low reliability of the generated code and the LLM doing very poorly on using tacit knowledge and context.
Although METR suggests that this poor showing may improve over time, it seems fair to argue whether LLM coding tools are at all a useful coding partner.
Before the release of Piper TTS in 2023, existing free-to-use TTS systems such as espeak and Festival sounded robotic and flat. Piper delivered much more natural-sounding output, without requiring massive resources to run. To change the voice style, the Piper AI model can be either retrained from scratch or fine-tuned with less effort. In the latter case, the problem to be solved first was how to generate the necessary volume of training phrases to run the fine-tuning of Piper’s AI model. This was solved using a heavyweight AI model, ChatterBox, which is capable of so-called zero-shot training. Check out the Chatterbox demo here.
As the loss function gets smaller, the model’s accuracy gets better
Training began with a corpus of test phrases in text format to ensure decent coverage of everyday English. [Cal] used ChatterBox to clone audio from a single test phrase generated by a ‘mystery TTS system’ and created 1,300 test phrases from this new voice. This audio set served as training data to fine-tune the Piper AI model on the lashed-up GPU rig.
To verify accuracy, [Cal] used OpenAI’s Whisper software to transcribe the audio back to text, in order to compare with the original text corpus. To overcome issues with punctuation and differences between US and UK English, the text was converted into phonemes using espeak-ng, resulting in a 98% phrase matching accuracy.
After down-sampling the training set using SoX, it was ready for the Piper TTS training system. Despite all the preparation, running the software felt anticlimactic. A few inconsistencies in the dataset necessitated the removal of some data points. After five days of training parked outside in the shade due to concerns about heat, TensorBoard indicated that the model’s loss function was converging. That’s AI-speak for: the model was tuned and ready for action! We think it sounds pretty slick.
Although not nearly as intimidating as her ceiling-mounted hanging arm body, GLaDOS spent a significant portion of the Portal 2 game in a stripped-down computer powered by a potato battery. [Dave] had already made a version of her original body, but it was built around a robotic arm that was too expensive for the project to be really accessible. For his latest project, therefore, he’s created a AI-powered version of GLaDOS’s potato-based incarnation, which also serves as a fun introduction to building AI systems.
[Dave] wanted the system to work offline, so he needed a computer powerful enough to run all of his software locally. He chose an Nvidia Jetson Orin Nano, which was powerful enough to run a workable software system, albeit slowly and with some memory limitations. A potato cell unfortunately doesn’t generate enough power to run a Jetson, and it would be difficult to find a potato large enough to fit the Jetson inside. Instead, [Dave] 3D-printed and painted a potato-shaped enclosure for the Jetson, a microphone, a speaker, and some supplemental electronics.
A large language model handles interactions with the user, but most models were too large to fit on the Jetson. [Dave] eventually selected Llama 3.2, and used LlamaIndex to preprocess information from the Portal wiki for retrieval-augmented generation. The model’s prompt was a bit difficult, but after contacting a prompt engineer, [Dave] managed to get it to respond to the hapless user in an appropriately acerbic manner. For speech generation, [Dave] used Piper after training it on audio files from the Portal wiki, and for speech recognition used Vosk (a good programming exercise, Vosk being, in his words, “somewhat documented”). He’s made all of the final code available on GitHub under the fitting name of PotatOS.
The end result is a handheld device that sarcastically insults anyone seeking its guidance. At least Dave had the good sense not to give this pernicious potato control over his home.