You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
# <a href="https://docs.unsloth.ai/"><img src="https://github.com/unslothai/unsloth/blob/main/images/documentation%20green%20button.png?raw=true" width="125"></a></a> Join Discord if you need help + ⭐ <i>Star us on <a href="https://github.com/unslothai/unsloth">Github</a> </i> ⭐
9
9
# </div>
10
-
#
10
+
#
11
11
# To install Unsloth your local device, follow [our guide](https://docs.unsloth.ai/get-started/install-and-update). This notebook is licensed [LGPL-3.0](https://github.com/unslothai/notebooks?tab=LGPL-3.0-1-ov-file#readme).
12
-
#
12
+
#
13
13
# You will learn how to do [data prep](#Data), how to [train](#Train), how to [run the model](#Inference), & [how to save it](#Save)
14
-
#
14
+
#
15
15
16
16
# ### News
17
17
18
-
#
18
+
#
19
19
# Unsloth's [Docker image](https://hub.docker.com/r/unsloth/unsloth) is here! Start training with no setup & environment issues. [Read our Guide](https://docs.unsloth.ai/new/how-to-train-llms-with-unsloth-and-docker).
20
-
#
20
+
#
21
21
# [gpt-oss RL](https://docs.unsloth.ai/new/gpt-oss-reinforcement-learning) is now supported with the fastest inference & lowest VRAM. Try our [new notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/gpt-oss-(20B)-GRPO.ipynb) which creates kernels!
22
-
#
22
+
#
23
23
# Introducing [Vision](https://docs.unsloth.ai/new/vision-reinforcement-learning-vlm-rl) and [Standby](https://docs.unsloth.ai/basics/memory-efficient-rl) for RL! Train Qwen, Gemma etc. VLMs with GSPO - even faster with less VRAM.
# Visit our docs for all our [model uploads](https://docs.unsloth.ai/get-started/all-our-models) and [notebooks](https://docs.unsloth.ai/get-started/unsloth-notebooks).
# We also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account! You can go to https://huggingface.co/settings/tokens for your personal tokens.
# To save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF.
319
-
#
321
+
#
320
322
# Some supported quant methods (full list on our [Wiki page](https://github.com/unslothai/unsloth/wiki#gguf-quantization-options)):
321
323
# * `q8_0` - Fast conversion. High resource use, but generally acceptable.
322
324
# * `q4_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K.
323
325
# * `q5_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K.
324
-
#
326
+
#
325
327
# [**NEW**] To finetune and auto export to Ollama, try our [Ollama notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3_(8B)-Ollama.ipynb)
# Now, use the `model-unsloth.gguf` file or `model-unsloth-Q4_K_M.gguf` file in llama.cpp.
361
-
#
363
+
#
362
364
# And we're done! If you have any questions on Unsloth, we have a [Discord](https://discord.gg/unsloth) channel! If you find any bugs or want to keep updated with the latest LLM stuff, or need help, join projects etc, feel free to join our Discord!
363
-
#
365
+
#
364
366
# Some other links:
365
367
# 1. Train your own reasoning model - Llama GRPO notebook [Free Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-GRPO.ipynb)
366
368
# 2. Saving finetunes to Ollama. [Free notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3_(8B)-Ollama.ipynb)
# 6. See notebooks for DPO, ORPO, Continued pretraining, conversational finetuning and more on our [documentation](https://docs.unsloth.ai/get-started/unsloth-notebooks)!
# <a href="https://docs.unsloth.ai/"><img src="https://github.com/unslothai/unsloth/blob/main/images/documentation%20green%20button.png?raw=true" width="125"></a></a> Join Discord if you need help + ⭐ <i>Star us on <a href="https://github.com/unslothai/unsloth">Github</a> </i> ⭐
9
9
# </div>
10
-
#
10
+
#
11
11
# To install Unsloth your local device, follow [our guide](https://docs.unsloth.ai/get-started/install-and-update). This notebook is licensed [LGPL-3.0](https://github.com/unslothai/notebooks?tab=LGPL-3.0-1-ov-file#readme).
12
-
#
12
+
#
13
13
# You will learn how to do [data prep](#Data), how to [train](#Train), how to [run the model](#Inference), & [how to save it](#Save)
14
-
#
14
+
#
15
15
16
16
# ### News
17
17
18
-
#
18
+
#
19
19
# Unsloth's [Docker image](https://hub.docker.com/r/unsloth/unsloth) is here! Start training with no setup & environment issues. [Read our Guide](https://docs.unsloth.ai/new/how-to-train-llms-with-unsloth-and-docker).
20
-
#
20
+
#
21
21
# [gpt-oss RL](https://docs.unsloth.ai/new/gpt-oss-reinforcement-learning) is now supported with the fastest inference & lowest VRAM. Try our [new notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/gpt-oss-(20B)-GRPO.ipynb) which creates kernels!
22
-
#
22
+
#
23
23
# Introducing [Vision](https://docs.unsloth.ai/new/vision-reinforcement-learning-vlm-rl) and [Standby](https://docs.unsloth.ai/basics/memory-efficient-rl) for RL! Train Qwen, Gemma etc. VLMs with GSPO - even faster with less VRAM.
# Visit our docs for all our [model uploads](https://docs.unsloth.ai/get-started/all-our-models) and [notebooks](https://docs.unsloth.ai/get-started/unsloth-notebooks).
28
-
#
28
+
#
29
29
30
30
# # ### Installation
31
-
#
31
+
#
32
32
# # In[ ]:
33
-
#
34
-
#
33
+
#
34
+
#
35
35
# get_ipython().run_cell_magic('capture', '', 'import os, re\nif "COLAB_" not in "".join(os.environ.keys()):\n !pip install unsloth\nelse:\n # Do this only in Colab notebooks! Otherwise use pip install unsloth\n import torch; v = re.match(r"[0-9]{1,}\\.[0-9]{1,}", str(torch.__version__)).group(0)\n xformers = "xformers==" + ("0.0.33.post1" if v=="2.9" else "0.0.32.post2" if v=="2.8" else "0.0.29.post3")\n !pip install --no-deps bitsandbytes accelerate {xformers} peft trl triton cut_cross_entropy unsloth_zoo\n !pip install sentencepiece protobuf "datasets==4.3.0" "huggingface_hub>=0.34.0" hf_transfer\n !pip install --no-deps unsloth\n!pip install transformers==4.56.2\n!pip install --no-deps trl==0.22.2\n')
# We also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account! You can go to https://huggingface.co/settings/tokens for your personal tokens.
# To save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF.
319
-
#
321
+
#
320
322
# Some supported quant methods (full list on our [Wiki page](https://github.com/unslothai/unsloth/wiki#gguf-quantization-options)):
321
323
# * `q8_0` - Fast conversion. High resource use, but generally acceptable.
322
324
# * `q4_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K.
323
325
# * `q5_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K.
324
-
#
326
+
#
325
327
# [**NEW**] To finetune and auto export to Ollama, try our [Ollama notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3_(8B)-Ollama.ipynb)
# Now, use the `model-unsloth.gguf` file or `model-unsloth-Q4_K_M.gguf` file in llama.cpp.
361
-
#
363
+
#
362
364
# And we're done! If you have any questions on Unsloth, we have a [Discord](https://discord.gg/unsloth) channel! If you find any bugs or want to keep updated with the latest LLM stuff, or need help, join projects etc, feel free to join our Discord!
363
-
#
365
+
#
364
366
# Some other links:
365
367
# 1. Train your own reasoning model - Llama GRPO notebook [Free Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-GRPO.ipynb)
366
368
# 2. Saving finetunes to Ollama. [Free notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3_(8B)-Ollama.ipynb)
# 6. See notebooks for DPO, ORPO, Continued pretraining, conversational finetuning and more on our [documentation](https://docs.unsloth.ai/get-started/unsloth-notebooks)!
0 commit comments