@@ -29,7 +29,7 @@ def noise_regularize(noises):
2929 if size <= 8 :
3030 break
3131
32- noise = noise .reshape ([1 , 1 , size // 2 , 2 , size // 2 , 2 ])
32+ noise = noise .reshape ([- 1 , 1 , size // 2 , 2 , size // 2 , 2 ])
3333 noise = noise .mean ([3 , 5 ])
3434 size //= 2
3535
@@ -128,7 +128,10 @@ def make_image(tensor):
128128 model = "net-lin" , net = "vgg" , use_gpu = device .startswith ("cuda" )
129129 )
130130
131- noises = g_ema .make_noise ()
131+ noises_single = g_ema .make_noise ()
132+ noises = []
133+ for noise in noises_single :
134+ noises .append (noise .repeat (imgs .shape [0 ], 1 , 1 , 1 ).normal_ ())
132135
133136 latent_in = latent_mean .detach ().clone ().unsqueeze (0 ).repeat (imgs .shape [0 ], 1 )
134137
@@ -186,16 +189,24 @@ def make_image(tensor):
186189 )
187190 )
188191
189- result_file = {"noises" : noises }
190-
191192 img_gen , _ = g_ema ([latent_path [- 1 ]], input_is_latent = True , noise = noises )
192193
193194 filename = os .path .splitext (os .path .basename (args .files [0 ]))[0 ] + ".pt"
194195
195196 img_ar = make_image (img_gen )
196197
198+ result_file = {}
197199 for i , input_name in enumerate (args .files ):
198- result_file [input_name ] = {"img" : img_gen [i ], "latent" : latent_in [i ]}
200+ noise_single = []
201+ for noise in noises :
202+ noise_single .append (noise [i : i + 1 ])
203+
204+ result_file [input_name ] = {
205+ "img" : img_gen [i ],
206+ "latent" : latent_in [i ],
207+ "noise" : noise_single ,
208+ }
209+
199210 img_name = os .path .splitext (os .path .basename (input_name ))[0 ] + "-project.png"
200211 pil_img = Image .fromarray (img_ar [i ])
201212 pil_img .save (img_name )
0 commit comments