|
| 1 | +import contextlib |
| 2 | +import warnings |
| 3 | + |
| 4 | +import torch |
| 5 | +from torch import autograd |
| 6 | +from torch.nn import functional as F |
| 7 | + |
| 8 | +enabled = True |
| 9 | +weight_gradients_disabled = False |
| 10 | + |
| 11 | + |
| 12 | +@contextlib.contextmanager |
| 13 | +def no_weight_gradients(): |
| 14 | + global weight_gradients_disabled |
| 15 | + |
| 16 | + old = weight_gradients_disabled |
| 17 | + weight_gradients_disabled = True |
| 18 | + yield |
| 19 | + weight_gradients_disabled = old |
| 20 | + |
| 21 | + |
| 22 | +def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1): |
| 23 | + if could_use_op(input): |
| 24 | + return conv2d_gradfix( |
| 25 | + transpose=False, |
| 26 | + weight_shape=weight.shape, |
| 27 | + stride=stride, |
| 28 | + padding=padding, |
| 29 | + output_padding=0, |
| 30 | + dilation=dilation, |
| 31 | + groups=groups, |
| 32 | + ).apply(input, weight, bias) |
| 33 | + |
| 34 | + return F.conv2d( |
| 35 | + input=input, |
| 36 | + weight=weight, |
| 37 | + bias=bias, |
| 38 | + stride=stride, |
| 39 | + padding=padding, |
| 40 | + dilation=dilation, |
| 41 | + groups=groups, |
| 42 | + ) |
| 43 | + |
| 44 | + |
| 45 | +def conv_transpose2d( |
| 46 | + input, |
| 47 | + weight, |
| 48 | + bias=None, |
| 49 | + stride=1, |
| 50 | + padding=0, |
| 51 | + output_padding=0, |
| 52 | + groups=1, |
| 53 | + dilation=1, |
| 54 | +): |
| 55 | + if could_use_op(input): |
| 56 | + return conv2d_gradfix( |
| 57 | + transpose=True, |
| 58 | + weight_shape=weight.shape, |
| 59 | + stride=stride, |
| 60 | + padding=padding, |
| 61 | + output_padding=output_padding, |
| 62 | + groups=groups, |
| 63 | + dilation=dilation, |
| 64 | + ).apply(input, weight, bias) |
| 65 | + |
| 66 | + return F.conv_transpose2d( |
| 67 | + input=input, |
| 68 | + weight=weight, |
| 69 | + bias=bias, |
| 70 | + stride=stride, |
| 71 | + padding=padding, |
| 72 | + output_padding=output_padding, |
| 73 | + dilation=dilation, |
| 74 | + groups=groups, |
| 75 | + ) |
| 76 | + |
| 77 | + |
| 78 | +def could_use_op(input): |
| 79 | + if (not enabled) or (not torch.backends.cudnn.enabled): |
| 80 | + return False |
| 81 | + |
| 82 | + if input.device.type != "cuda": |
| 83 | + return False |
| 84 | + |
| 85 | + if any(torch.__version__.startswith(x) for x in ["1.7.", "1.8."]): |
| 86 | + return True |
| 87 | + |
| 88 | + warnings.warn( |
| 89 | + f"conv2d_gradfix not supported on PyTorch {torch.__version__}. Falling back to torch.nn.functional.conv2d()." |
| 90 | + ) |
| 91 | + |
| 92 | + return False |
| 93 | + |
| 94 | + |
| 95 | +def ensure_tuple(xs, ndim): |
| 96 | + xs = tuple(xs) if isinstance(xs, (tuple, list)) else (xs,) * ndim |
| 97 | + |
| 98 | + return xs |
| 99 | + |
| 100 | + |
| 101 | +conv2d_gradfix_cache = dict() |
| 102 | + |
| 103 | + |
| 104 | +def conv2d_gradfix( |
| 105 | + transpose, weight_shape, stride, padding, output_padding, dilation, groups |
| 106 | +): |
| 107 | + ndim = 2 |
| 108 | + weight_shape = tuple(weight_shape) |
| 109 | + stride = ensure_tuple(stride, ndim) |
| 110 | + padding = ensure_tuple(padding, ndim) |
| 111 | + output_padding = ensure_tuple(output_padding, ndim) |
| 112 | + dilation = ensure_tuple(dilation, ndim) |
| 113 | + |
| 114 | + key = (transpose, weight_shape, stride, padding, output_padding, dilation, groups) |
| 115 | + if key in conv2d_gradfix_cache: |
| 116 | + return conv2d_gradfix_cache[key] |
| 117 | + |
| 118 | + common_kwargs = dict( |
| 119 | + stride=stride, padding=padding, dilation=dilation, groups=groups |
| 120 | + ) |
| 121 | + |
| 122 | + def calc_output_padding(input_shape, output_shape): |
| 123 | + if transpose: |
| 124 | + return [0, 0] |
| 125 | + |
| 126 | + return [ |
| 127 | + input_shape[i + 2] |
| 128 | + - (output_shape[i + 2] - 1) * stride[i] |
| 129 | + - (1 - 2 * padding[i]) |
| 130 | + - dilation[i] * (weight_shape[i + 2] - 1) |
| 131 | + for i in range(ndim) |
| 132 | + ] |
| 133 | + |
| 134 | + class Conv2d(autograd.Function): |
| 135 | + @staticmethod |
| 136 | + def forward(ctx, input, weight, bias): |
| 137 | + if not transpose: |
| 138 | + out = F.conv2d(input=input, weight=weight, bias=bias, **common_kwargs) |
| 139 | + |
| 140 | + else: |
| 141 | + out = F.conv_transpose2d( |
| 142 | + input=input, |
| 143 | + weight=weight, |
| 144 | + bias=bias, |
| 145 | + output_padding=output_padding, |
| 146 | + **common_kwargs, |
| 147 | + ) |
| 148 | + |
| 149 | + ctx.save_for_backward(input, weight) |
| 150 | + |
| 151 | + return out |
| 152 | + |
| 153 | + @staticmethod |
| 154 | + def backward(ctx, grad_output): |
| 155 | + input, weight = ctx.saved_tensors |
| 156 | + grad_input, grad_weight, grad_bias = None, None, None |
| 157 | + |
| 158 | + if ctx.needs_input_grad[0]: |
| 159 | + p = calc_output_padding( |
| 160 | + input_shape=input.shape, output_shape=grad_output.shape |
| 161 | + ) |
| 162 | + grad_input = conv2d_gradfix( |
| 163 | + transpose=(not transpose), |
| 164 | + weight_shape=weight_shape, |
| 165 | + output_padding=p, |
| 166 | + **common_kwargs, |
| 167 | + ).apply(grad_output, weight, None) |
| 168 | + |
| 169 | + if ctx.needs_input_grad[1] and not weight_gradients_disabled: |
| 170 | + grad_weight = Conv2dGradWeight.apply(grad_output, input) |
| 171 | + |
| 172 | + if ctx.needs_input_grad[2]: |
| 173 | + grad_bias = grad_output.sum((0, 2, 3)) |
| 174 | + |
| 175 | + return grad_input, grad_weight, grad_bias |
| 176 | + |
| 177 | + class Conv2dGradWeight(autograd.Function): |
| 178 | + @staticmethod |
| 179 | + def forward(ctx, grad_output, input): |
| 180 | + op = torch._C._jit_get_operation( |
| 181 | + "aten::cudnn_convolution_backward_weight" |
| 182 | + if not transpose |
| 183 | + else "aten::cudnn_convolution_transpose_backward_weight" |
| 184 | + ) |
| 185 | + flags = [ |
| 186 | + torch.backends.cudnn.benchmark, |
| 187 | + torch.backends.cudnn.deterministic, |
| 188 | + torch.backends.cudnn.allow_tf32, |
| 189 | + ] |
| 190 | + grad_weight = op( |
| 191 | + weight_shape, |
| 192 | + grad_output, |
| 193 | + input, |
| 194 | + padding, |
| 195 | + stride, |
| 196 | + dilation, |
| 197 | + groups, |
| 198 | + *flags, |
| 199 | + ) |
| 200 | + ctx.save_for_backward(grad_output, input) |
| 201 | + |
| 202 | + return grad_weight |
| 203 | + |
| 204 | + @staticmethod |
| 205 | + def backward(ctx, grad_grad_weight): |
| 206 | + grad_output, input = ctx.saved_tensors |
| 207 | + grad_grad_output, grad_grad_input = None, None |
| 208 | + |
| 209 | + if ctx.needs_input_grad[0]: |
| 210 | + grad_grad_output = Conv2d.apply(input, grad_grad_weight, None) |
| 211 | + |
| 212 | + if ctx.needs_input_grad[1]: |
| 213 | + p = calc_output_padding( |
| 214 | + input_shape=input.shape, output_shape=grad_output.shape |
| 215 | + ) |
| 216 | + grad_grad_input = conv2d_gradfix( |
| 217 | + transpose=(not transpose), |
| 218 | + weight_shape=weight_shape, |
| 219 | + output_padding=p, |
| 220 | + **common_kwargs, |
| 221 | + ).apply(grad_output, grad_grad_weight, None) |
| 222 | + |
| 223 | + return grad_grad_output, grad_grad_input |
| 224 | + |
| 225 | + conv2d_gradfix_cache[key] = Conv2d |
| 226 | + |
| 227 | + return Conv2d |
0 commit comments