@@ -35,18 +35,38 @@ For example, if you cloned repositories in ~/stylegan2 and downloaded stylegan2-
3535
3636> python convert_weight.py --repo ~ /stylegan2 stylegan2-ffhq-config-f.pkl
3737
38- This will create converted stylegan2-ffhq-config-f.pt file.
38+ This will create converted stylegan2-ffhq-config-f.pt file.
3939
4040### Generate samples
4141
42- > python generate.py --sample N_FACES --pics N_PICS --ckpt PATH_CHECKPOINT
42+ > python generate.py --sample N_FACES --pics N_PICS --ckpt PATH_CHECKPOINT
4343
44- You should change your size (--size 256 for example) if you train with another dimension.
44+ You should change your size (--size 256 for example) if you train with another dimension.
4545
4646### Project images to latent spaces
4747
4848> python projector.py --ckpt [ CHECKPOINT] --size [ GENERATOR_OUTPUT_SIZE] FILE1 FILE2 ...
4949
50+ ### Closed-Form Factorization (https://arxiv.org/abs/2007.06600)
51+
52+ You can use ` closed_form_factorization.py ` and ` apply_factor.py ` to discover meaningful latent semantic factor or directions in unsupervised manner.
53+
54+ First, you need to extract eigenvectors of weight matrices using ` closed_form_factorization.py `
55+
56+ > python closed_form_factorization.py [ CHECKPOINT]
57+
58+ This will create factor file that contains eigenvectors. (Default: factor.pt) And you can use ` apply_factor.py ` to test the meaning of extracted directions
59+
60+ > python apply_factor.py -i [ INDEX_OF_EIGENVECTOR] -d [ DEGREE_OF_MOVE] -n [ NUMBER_OF_SAMPLES] --ckpt [ CHECKPOINT] [ FACTOR_FILE]
61+
62+ For example,
63+
64+ > python apply_factor.py -i 19 -d 5 -n 10 --ckpt [ CHECKPOINT] factor.pt
65+
66+ Will generate 10 random samples, and samples generated from latents that moved along 19th eigenvector with size/degree +-5.
67+
68+ ![ Sample of closed form factorization] ( factor_index-13_degree-5.0.png )
69+
5070## Pretrained Checkpoints
5171
5272[ Link] ( https://drive.google.com/open?id=1PQutd-JboOCOZqmd95XWxWrO8gGEvRcO )
0 commit comments