Skip to content

Background Remover lets you Remove Background from images and video using AI with a simple command line interface that is free and open source.

License

Notifications You must be signed in to change notification settings

nadermx/backgroundremover

Repository files navigation

BackgroundRemover

Background Remover background remover video
BackgroundRemover is a command line tool to remove background from image and video using AI, made by nadermx to power https://BackgroundRemoverAI.com. If you wonder why it was made read this short blog post.

Requirements

  • python >= 3.6

  • python3.6-dev #or what ever version of python you use

  • torch and torchvision stable version (https://pytorch.org)

  • ffmpeg 4.4+

  • To clarify, you must install both python and whatever dev version of python you installed. IE; python3.10-dev with python3.10 or python3.8-dev with python3.8

How to install torch and ffmpeg

Go to https://pytorch.org and scroll down to INSTALL PYTORCH section and follow the instructions.

For CPU-only (default):

pip3 install torch torchvision --index-url https://download.pytorch.org/whl/cpu

For GPU (CUDA) support:

# For CUDA 11.8
pip3 install torch torchvision --index-url https://download.pytorch.org/whl/cu118

# For CUDA 12.1
pip3 install torch torchvision --index-url https://download.pytorch.org/whl/cu121

Visit https://pytorch.org/get-started/locally/ to find the correct command for your CUDA version.

To install ffmpeg and python-dev:

sudo apt install ffmpeg python3.6-dev

Installation

To Install backgroundremover, install it from pypi

pip install --upgrade pip
pip install backgroundremover

Please note that when you first run the program, it will check to see if you have the u2net models, if you do not, it will pull them from this repo

It is also possible to run this without installing it via pip, just clone the git to local start a virtual env and install requirements and run

python -m backgroundremover.cmd.cli -i "video.mp4" -mk -o "output.mov"

and for windows

python.exe -m backgroundremover.cmd.cli -i "video.mp4" -mk -o "output.mov"

Installation using Docker

git clone https://github.com/nadermx/backgroundremover.git
cd backgroundremover
docker build -t bgremover .
# Basic usage (models will be downloaded on each run)
alias backgroundremover='docker run -it --rm -v "$(pwd):/tmp" bgremover:latest'

# Recommended: Persist models between runs to avoid re-downloading
mkdir -p ~/.u2net
alias backgroundremover='docker run -it --rm -v "$(pwd):/tmp" -v "$HOME/.u2net:/root/.u2net" bgremover:latest'

# For video processing: Increase shared memory to avoid multiprocessing errors
alias backgroundremover='docker run -it --rm --shm-size=2g -v "$(pwd):/tmp" -v "$HOME/.u2net:/root/.u2net" bgremover:latest'

Note for Docker video processing: Video processing uses multiprocessing which requires adequate shared memory. If you encounter errors like OSError: [Errno 95] Operation not supported, use --shm-size=2g (or higher) or --ipc=host when running the container.

GPU Acceleration

BackgroundRemover automatically detects and uses your GPU if available, which provides significant speed improvements (typically 5-10x faster than CPU).

To verify GPU is being used:

python3 -c "import torch; print('GPU available:', torch.cuda.is_available()); print('GPU name:', torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'N/A')"

Troubleshooting GPU issues:

  1. GPU not detected: Ensure you installed the CUDA-compatible version of PyTorch (see installation instructions above)
  2. Out of memory errors: Reduce GPU batch size with -gb 1 flag
  3. Slow performance on CPU: Install CUDA-compatible PyTorch for GPU acceleration
  4. CUDA version mismatch: Match your PyTorch CUDA version with your system's CUDA installation

The tool will automatically fall back to CPU if GPU is not available or encounters errors.

Usage as a cli

Image

Remove the background from a local file image

backgroundremover -i "/path/to/image.jpeg" -o "output.png"

Supported image formats: .jpg, .jpeg, .png, .heic, .heif (HEIC/HEIF support requires pillow-heif)

Process all images in a folder

You can now remove backgrounds from all supported image or video files in a folder using the --input-folder (-if) option. You can also optionally set an output folder using --output-folder (-of). If --output-folder is not provided, the outputs will be saved in the same input folder, prefixed with output_.

Example: Folder of Images

backgroundremover -if "/path/to/image-folder" -of "/path/to/output-folder"

This will process all .jpg, .jpeg, .png, .heic, and .heif images in the folder and save the results to the output folder.

Advance usage for image background removal

Alpha Matting for Better Edge Quality:

By default, backgroundremover produces soft, natural edges. For some use cases (like cartoons, graphics, or sharp-edged objects), you may want sharper edges or better edge refinement.

# Enable alpha matting for refined edges
backgroundremover -i "/path/to/image.jpeg" -a -o "output.png"

# Adjust erosion size for sharper/softer edges (default: 10)
# Smaller values (1-5) = sharper, harder edges (good for cartoons/graphics)
# Larger values (15-25) = softer, more natural edges (good for portraits)
backgroundremover -i "/path/to/image.jpeg" -a -ae 5 -o "output.png"

Alpha matting parameters:

  • -a - Enable alpha matting
  • -af - Foreground threshold (default: 240)
  • -ab - Background threshold (default: 10)
  • -ae - Erosion size (1-25, default: 10) - controls edge sharpness
  • -az - Base size (default: 1000) - affects processing resolution

Change the model for different subjects:

# For humans/people - most accurate for human subjects
backgroundremover -i "/path/to/image.jpeg" -m "u2net_human_seg" -o "output.png"

# For general objects - good all-around model (default)
backgroundremover -i "/path/to/image.jpeg" -m "u2net" -o "output.png"

# Faster processing - lower accuracy but quicker
backgroundremover -i "/path/to/image.jpeg" -m "u2netp" -o "output.png"

Output only the mask (binary mask/matte)

backgroundremover -i "/path/to/image.jpeg" -om -o "mask.png"

Replace background with a custom color

# Replace with red background
backgroundremover -i "/path/to/image.jpeg" -bc "255,0,0" -o "output.png"

# Replace with green background
backgroundremover -i "/path/to/image.jpeg" -bc "0,255,0" -o "output.png"

# Replace with blue background
backgroundremover -i "/path/to/image.jpeg" -bc "0,0,255" -o "output.png"

Replace background with a custom image

# Replace background with another image
backgroundremover -i "/path/to/image.jpeg" -bi "/path/to/background.jpg" -o "output.png"

Use with pipes (stdin/stdout)

You can use backgroundremover in Unix pipelines by reading from stdin and writing to stdout:

# Read from stdin, write to stdout
cat input.jpg | backgroundremover > output.png

# Use with other tools in a pipeline
curl https://example.com/image.jpg | backgroundremover | convert - -resize 50% smaller.png

# Equivalent explicit syntax
backgroundremover -i - -o - < input.jpg > output.png

Note: Pipe mode assumes image input (not video).

Run as HTTP API Server

You can run backgroundremover as an HTTP API server:

# Start server on default port 5000
backgroundremover-server

# Specify custom host and port
backgroundremover-server --addr 0.0.0.0 --port 8080

API Usage:

# Upload image via POST
curl -X POST -F "file=@image.jpg" http://localhost:5000/ -o output.png

# Process from URL via GET
curl "http://localhost:5000/?url=https://example.com/image.jpg" -o output.png

# With alpha matting
curl "http://localhost:5000/?url=https://example.com/image.jpg&a=true&af=240" -o output.png

# Choose model
curl "http://localhost:5000/?url=https://example.com/image.jpg&model=u2net_human_seg" -o output.png

Parameters:

  • a - Enable alpha matting
  • af - Alpha matting foreground threshold (default: 240)
  • ab - Alpha matting background threshold (default: 10)
  • ae - Alpha matting erosion size (default: 10)
  • az - Alpha matting base size (default: 1000)
  • model - Model choice: u2net, u2netp, or u2net_human_seg

Video

remove background from video and make transparent mov

backgroundremover -i "/path/to/video.mp4" -tv -o "output.mov"

Process all videos in a folder

You can now remove backgrounds from all supported image or video files in a folder using the --input-folder (-if) option. You can also optionally set an output folder using --output-folder (-of). If --output-folder is not provided, the outputs will be saved in the same input folder, prefixed with output_.

Example: Folder of Videos to Transparent .mov

backgroundremover -if "/path/to/video-folder" -of "/path/to/output-folder" -tv

You can also combine additional options:

backgroundremover -if "videos" -of "processed" -m "u2net_human_seg" -fr 30 -tv
  • Uses the u2net_human_seg model
  • Overrides video framerate to 30 fps
  • Outputs transparent .mov files into the processed/ folder
  • Supported video formats: .mp4, .mov, .webm, .ogg, .gif
  • Output files will be named like output_filename.ext in the output folder

remove background from local video and overlay it over other video

backgroundremover -i "/path/to/video.mp4" -tov -bv "/path/to/background_video.mp4" -o "output.mov"

remove background from local video and overlay it over an image

backgroundremover -i "/path/to/video.mp4" -toi -bi "/path/to/background_image.png" -o "output.mov"

remove background from video and make transparent gif

backgroundremover -i "/path/to/video.mp4" -tg -o "output.gif"

Make matte key file (green screen overlay)

Make a matte file for premiere

backgroundremover -i "/path/to/video.mp4" -mk -o "output.matte.mp4"

Video Playback and Compatibility

Important: The transparent .mov files created by this tool use the qtrle (QuickTime RLE) codec with alpha channel. Not all video players support this format correctly.

Recommended video players:

  • mpv (https://mpv.io) - Best support for transparent videos (Linux, Mac, Windows)
  • QuickTime Player (Mac) - Native support on macOS
  • DaVinci Resolve / Adobe Premiere - Full support in video editors (may need to enable alpha channel in properties)

Common issues:

  • VLC: May not display transparency correctly - shows distorted colors or green/purple tint
  • Windows Media Player: Limited transparency support
  • Web browsers: Limited support for qtrle codec

Workarounds if your player doesn't support transparency:

  1. Convert to WebM with VP9 (better compatibility):

    ffmpeg -i output.mov -c:v libvpx-vp9 -pix_fmt yuva420p output.webm
  2. Add a colored background (for testing):

    ffmpeg -f lavfi -i color=white:s=1920x1080 -i output.mov -filter_complex 'overlay=0:0' -c:v libx264 output_with_bg.mp4
  3. Use the transparent GIF output instead (simpler but lower quality):

    backgroundremover -i "video.mp4" -tg -o "output.gif"

Advance usage for video

Change the framerate of the video (default is set to 30)

backgroundremover -i "/path/to/video.mp4" -fr 30 -tv -o "output.mov"

Set total number of frames of the video (default is set to -1, ie the remove background from full video)

backgroundremover -i "/path/to/video.mp4" -fl 150 -tv -o "output.mov"

Change the gpu batch size of the video (default is set to 1)

backgroundremover -i "/path/to/video.mp4" -gb 4 -tv -o "output.mov"

Change the number of workers working on video (default is set to 1)

backgroundremover -i "/path/to/video.mp4" -wn 4 -tv -o "output.mov"

Note: Using high worker counts (>4) may cause ConnectionResetError or crashes on some systems due to multiprocessing limitations. If you experience errors, reduce the number of workers or use -wn 1. The optimal number depends on your CPU cores and available RAM. change the model for different background removal methods between u2netp, u2net, or u2net_human_seg and limit the frames to 150

backgroundremover -i "/path/to/video.mp4" -m "u2net_human_seg" -fl 150 -tv -o "output.mov"

As a library

Remove background image

from backgroundremover.bg import remove

def remove_bg(src_img_path, out_img_path):
    model_choices = ["u2net", "u2net_human_seg", "u2netp"]
    f = open(src_img_path, "rb")
    data = f.read()
    img = remove(data, model_name=model_choices[0],
                 alpha_matting=True,
                 alpha_matting_foreground_threshold=240,
                 alpha_matting_background_threshold=10,
                 alpha_matting_erode_structure_size=10,
                 alpha_matting_base_size=1000)
    f.close()
    f = open(out_img_path, "wb")
    f.write(img)
    f.close()

Generate only a binary mask

from backgroundremover.bg import remove

f = open("input.jpg", "rb")
data = f.read()
mask = remove(data, model_name="u2net", only_mask=True)
f.close()

f = open("mask.png", "wb")
f.write(mask)
f.close()

Replace background with custom color

from backgroundremover.bg import remove

f = open("input.jpg", "rb")
data = f.read()
# Use RGB tuple for background color (255, 0, 0) = red
img = remove(data, model_name="u2net", background_color=(255, 0, 0))
f.close()

f = open("output.png", "wb")
f.write(img)
f.close()

Replace background with custom image

from backgroundremover.bg import remove

# Read input image
with open("input.jpg", "rb") as f:
    input_data = f.read()

# Read background image
with open("background.jpg", "rb") as f:
    bg_data = f.read()

# Remove background and composite over background image
result = remove(input_data, model_name="u2net", background_image=bg_data)

# Save result
with open("output.png", "wb") as f:
    f.write(result)

Troubleshooting

"EOFError: Ran out of input" or Model Loading Errors

If you see errors like EOFError: Ran out of input or model loading failures:

Cause: The model file download was corrupted or interrupted.

Solution:

# Delete the corrupted model file
rm ~/.u2net/u2net.pth
# Or for other models:
rm ~/.u2net/u2netp.pth
rm ~/.u2net/u2net_human_seg.pth

# Then run backgroundremover again - it will re-download the model
backgroundremover -i "your-image.jpg" -o "output.png"

Prevention: The tool now automatically validates and retries failed downloads, but if you have an old corrupted model from a previous version, you'll need to delete it manually.

Background Not Removed or Parts Missing

If the background is not being removed properly, or parts of your subject are disappearing:

  1. Try a different model:

    • Use u2net_human_seg for people/portraits
    • Use u2net (default) for general objects
    • The model choice significantly affects results
  2. Adjust alpha matting:

    • Enable with -a flag for better edge detection
    • Adjust threshold values -af and -ab if parts are incorrectly classified
  3. Check your input:

    • Ensure good lighting and contrast between subject and background
    • Avoid backgrounds that are similar in color to your subject
    • Consider manually cropping to include more recognizable background

Transparency Issues or Strange Colors

If the output video shows distorted colors, green/purple tint, or transparency isn't working:

  1. Check your video player - See the "Video Playback and Compatibility" section above
  2. Use a recommended player like mpv or QuickTime Player
  3. Convert to a different format if needed (see WebM conversion examples)

Large Output File Sizes

The transparent .mov files use uncompressed qtrle codec and will be significantly larger than the input. This is expected:

  • A 10MB input video may produce a 500MB+ output
  • This is normal for lossless transparency
  • Use post-processing to compress if needed (see conversion examples in the playback section)

Poor Quality or Inaccurate Results

Background removal quality depends on:

  1. Input quality - Higher resolution and better lighting improve results
  2. Subject complexity - Simple, well-defined subjects work best
  3. Model limitations - AI models may struggle with:
    • Very similar colors between subject and background
    • Complex hair/fur details
    • Transparent or reflective objects
    • Unusual subjects the model wasn't trained on

Tips for better results:

  • Use u2net_human_seg specifically for human subjects
  • Enable alpha matting with -a for complex edges
  • Ensure good contrast between subject and background when capturing
  • Try different alpha matting parameters (-ae, -af, -ab)

Testing

Currently, this project does not have automated test cases. Testing is done manually using sample images and videos.

Manual Testing

To test backgroundremover functionality:

Test Image Background Removal:

# Basic test
backgroundremover -i "test_image.jpg" -o "output.png"

# Test with alpha matting
backgroundremover -i "test_image.jpg" -a -ae 15 -o "output.png"

# Test mask generation
backgroundremover -i "test_image.jpg" -om -o "mask.png"

# Test custom background color
backgroundremover -i "test_image.jpg" -bc "0,255,0" -o "output.png"

Test Video Processing:

# Test transparent video
backgroundremover -i "test_video.mp4" -tv -o "output.mov"

# Test matte key
backgroundremover -i "test_video.mp4" -mk -o "matte.mov"

# Test transparent GIF
backgroundremover -i "test_video.mp4" -tg -o "output.gif"

Test HTTP Server:

# Start server
backgroundremover-server --port 5000

# Test with curl (in another terminal)
curl -X POST -F "file=@test_image.jpg" http://localhost:5000/ -o output.png

Contributing Tests

Automated tests using pytest or unittest would be a valuable contribution to this project. Test cases should cover:

  • Image processing with different formats (JPG, PNG, HEIC)
  • Video processing with different codecs
  • CLI argument validation
  • HTTP API endpoints
  • Model loading and inference
  • Error handling

Todo

Completed

  • ✅ HTTP API server (use backgroundremover-server)
  • ✅ Comprehensive documentation and troubleshooting
  • ✅ Docker support with model persistence
  • ✅ HEIC/HEIF image format support
  • ✅ Pipe support (stdin/stdout)
  • ✅ Custom background colors and images
  • ✅ Binary mask output
  • ✅ Folder batch processing

In Progress / Future Features

  • Support for additional models (ISNet, BiRefNet, U2Net cloth segmentation)
  • CoreML support for Apple Silicon acceleration
  • Standalone executable (no Python installation required)
  • Automated test suite
  • Real-time background removal for video streaming
  • Convert logic from video to image to utilize more GPU on image removal
  • Ability to provide feedback on results to improve training datasets
  • Support for custom/user-provided models
  • Google Colab notebook

Contributions welcome! See open issues for details.

Pull requests

Accepted

If you like this library

Give a link to our project BackgroundRemoverAI.com or this git, telling people that you like it or use it.

Reason for project

We made it our own package after merging together parts of others, adding in a few features of our own via posting parts as bounty questions on superuser, etc. As well as asked on hackernews earlier to open source the image part, so decided to add in video, and a bit more.

References

License

Code Licensed under MIT License Models Licensed under Apache License 2.0