88
99import marimo
1010
11- __generated_with = "0.15.5 "
11+ __generated_with = "0.19.6 "
1212app = marimo .App ()
1313
1414
@@ -22,7 +22,6 @@ def _():
2222def _ (mo ):
2323 kinds = [
2424 # ---
25- "info" ,
2625 "note" ,
2726 # ---
2827 "danger" ,
@@ -42,10 +41,10 @@ def _(mo):
4241
4342 def create (kind ):
4443 return mo .md (
45- rf """
46-
47- !!! { kind } " { kind } admonition"
48- This is an admonition for { kind }
44+ f """
45+ /// { kind } | { kind } admonition
46+ This is an admonition for { kind }
47+ ///
4948 """
5049 )
5150
@@ -56,37 +55,37 @@ def create(kind):
5655
5756@app .cell
5857def _ (mo ):
59- mo .md ("""# Misc""" )
58+ mo .md ("""
59+ # Misc
60+ """ )
6061 return
6162
6263
6364@app .cell
6465def _ (mo ):
65- mo .md (
66- rf"""
67- !!! important ""
68- This is an admonition box without a title.
69- """
70- )
66+ mo .md ("""
67+ /// important |
68+ This is an admonition box without a title.
69+ ///
70+ """ )
7171 return
7272
7373
7474@app .cell
7575def _ (mo ):
76- mo .md (
77- r"""
78- !!! tip ""
79- Importa recordar as seguintes regras de diferenciação de matrizes:
76+ mo .md (r"""
77+ /// tip |
78+ Importa recordar as seguintes regras de diferenciação de matrizes:
8079
81- $$\frac{\partial\, u'v}{\partial\, v} = \frac{\partial\, v'u}{\partial\, v} = u$$
80+ $$\frac{\partial\, u'v}{\partial\, v} = \frac{\partial\, v'u}{\partial\, v} = u$$
8281
83- sendo $u$ e $v$ dois vetores.
82+ sendo $u$ e $v$ dois vetores.
8483
85- $$\frac{\partial\, v'Av}{\partial\, v}=2Av=2v'A$$
84+ $$\frac{\partial\, v'Av}{\partial\, v}=2Av=2v'A$$
8685
87- em que $A$ é uma matriz simétrica. No nosso caso, $A=X'X$ e $v=\hat{\boldsymbol{\beta}}$.import marimo as mo
88- """
89- )
86+ em que $A$ é uma matriz simétrica. No nosso caso, $A=X'X$ e $v=\hat{\boldsymbol{\beta}}$.
87+ ///
88+ """ )
9089 return
9190
9291
0 commit comments