|
| 1 | +\section*{Questão 3} |
| 2 | + |
| 3 | +\section*{Solução} |
| 4 | +Sejam |
| 5 | +\[ |
| 6 | +s_\alpha=\sin(\alpha),\qquad s_\beta=\sin(\beta),\qquad c_\beta=\cos(\beta). |
| 7 | +\] |
| 8 | + |
| 9 | +1.\,\,Do enunciado |
| 10 | +\begin{align*} |
| 11 | +s_\alpha-s_\beta &=\tfrac14\tag{1}\\ |
| 12 | +s_\alpha-2s_\beta+c_\beta &=\tfrac34\tag{2} |
| 13 | +\end{align*} |
| 14 | + |
| 15 | +2.\,\,Subtraindo (1) de (2): |
| 16 | +\[ |
| 17 | +c_\beta-s_\beta=\tfrac12.\tag{3} |
| 18 | +\] |
| 19 | + |
| 20 | +3.\,\,Determinando $s_\beta$ e $c_\beta$. |
| 21 | +Pela (3), $c_\beta=s_\beta+\tfrac12$. Usando $c_\beta^{\,2}+s_\beta^{\,2}=1$: |
| 22 | +\begin{align*} |
| 23 | +(s_\beta+\tfrac12)^2+s_\beta^{\,2}=1 |
| 24 | +&\;\Longrightarrow\;2s_\beta^{\,2}+s_\beta-\tfrac34=0\\ |
| 25 | +&\;\Longrightarrow\;s_\beta=\frac{-1\pm\sqrt7}{4}. |
| 26 | +\end{align*} |
| 27 | +Como $\beta\in[\pi/2,\,3\pi/2]$ implica $\cos(\beta)\le0$, escolhe‑se |
| 28 | +\[ |
| 29 | +s_\beta=\frac{-1-\sqrt7}{4},\qquad |
| 30 | +c_\beta=\frac{1-\sqrt7}{4}\;(<0). |
| 31 | +\] |
| 32 | + |
| 33 | +4.\,\,Determinando $s_\alpha$ e $c_\alpha$. |
| 34 | +Da (1): |
| 35 | +\[ |
| 36 | +s_\alpha=\tfrac14+s_\beta=\frac{-\sqrt7}{4}. |
| 37 | +\] |
| 38 | +Logo |
| 39 | +\[ |
| 40 | +c_\alpha=-\sqrt{1-s_\alpha^{\,2}}=-\sqrt{1-\tfrac{7}{16}}=-\frac34, |
| 41 | +\] |
| 42 | +pois $\alpha\in[\pi/2,\,3\pi/2]\Rightarrow\cos(\alpha)\le0$. |
| 43 | + |
| 44 | +5.\,\,Calculando $\sin(\alpha+\beta)$: |
| 45 | +\begin{align*} |
| 46 | +\sin(\alpha+\beta)&=s_\alpha c_\beta+c_\alpha s_\beta\\[2pt] |
| 47 | +&=\Bigl(-\frac{\sqrt7}{4}\Bigr)\Bigl(\frac{1-\sqrt7}{4}\Bigr)+\Bigl(-\frac34\Bigr)\Bigl(\frac{-1-\sqrt7}{4}\Bigr)\\ |
| 48 | +&=\frac{-\sqrt7(1-\sqrt7)+3(1+\sqrt7)}{16}\\ |
| 49 | +&=\frac{-\sqrt7+7+3+3\sqrt7}{16}\\ |
| 50 | +&=\frac{10+2\sqrt7}{16}=\frac{5+\sqrt7}{8}. |
| 51 | +\end{align*} |
| 52 | + |
| 53 | +ANSWER: $\displaystyle \sin(\alpha+\beta)=\frac{5+\sqrt7}{8}\,. $ |
0 commit comments