|
76 | 76 | }, |
77 | 77 | { |
78 | 78 | "cell_type": "code", |
79 | | - "execution_count": null, |
| 79 | + "execution_count": 2, |
80 | 80 | "id": "irl7eMFnSPZr", |
81 | 81 | "metadata": { |
82 | 82 | "id": "irl7eMFnSPZr" |
|
90 | 90 | "POSTGRES_PORT = \"6024\" # @param {type: \"string\"}\n", |
91 | 91 | "POSTGRES_DB = \"langchain\" # @param {type: \"string\"}\n", |
92 | 92 | "TABLE_NAME = \"vectorstore\" # @param {type: \"string\"}\n", |
93 | | - "VECTOR_SIZE = 768 # @param {type: \"int\"}" |
| 93 | + "VECTOR_SIZE = 1024 # @param {type: \"int\"}" |
94 | 94 | ] |
95 | 95 | }, |
96 | 96 | { |
|
118 | 118 | }, |
119 | 119 | { |
120 | 120 | "cell_type": "code", |
121 | | - "execution_count": null, |
| 121 | + "execution_count": 3, |
122 | 122 | "metadata": {}, |
123 | 123 | "outputs": [], |
124 | 124 | "source": [ |
|
132 | 132 | }, |
133 | 133 | { |
134 | 134 | "cell_type": "code", |
135 | | - "execution_count": null, |
| 135 | + "execution_count": 4, |
136 | 136 | "metadata": {}, |
137 | 137 | "outputs": [], |
138 | 138 | "source": [ |
139 | 139 | "from langchain_postgres import PGEngine\n", |
140 | 140 | "\n", |
141 | | - "engine = PGEngine.from_connection_string(url=CONNECTION_STRING)" |
| 141 | + "pg_engine = PGEngine.from_connection_string(url=CONNECTION_STRING)" |
142 | 142 | ] |
143 | 143 | }, |
144 | 144 | { |
|
152 | 152 | }, |
153 | 153 | { |
154 | 154 | "cell_type": "code", |
155 | | - "execution_count": null, |
| 155 | + "execution_count": 5, |
156 | 156 | "metadata": {}, |
157 | 157 | "outputs": [], |
158 | 158 | "source": [ |
|
178 | 178 | }, |
179 | 179 | { |
180 | 180 | "cell_type": "code", |
181 | | - "execution_count": null, |
| 181 | + "execution_count": 7, |
182 | 182 | "metadata": { |
183 | 183 | "id": "avlyHEMn6gzU" |
184 | 184 | }, |
185 | 185 | "outputs": [], |
186 | 186 | "source": [ |
187 | | - "await engine.ainit_vectorstore_table(\n", |
| 187 | + "await pg_engine.ainit_vectorstore_table(\n", |
188 | 188 | " table_name=TABLE_NAME,\n", |
189 | 189 | " vector_size=VECTOR_SIZE,\n", |
190 | 190 | ")" |
|
200 | 200 | "```python\n", |
201 | 201 | "SCHEMA_NAME=\"my_schema\"\n", |
202 | 202 | "\n", |
203 | | - "await engine.ainit_vectorstore_table(\n", |
| 203 | + "await pg_engine.ainit_vectorstore_table(\n", |
204 | 204 | " table_name=TABLE_NAME,\n", |
205 | 205 | " vector_size=768,\n", |
206 | 206 | " schema_name=SCHEMA_NAME, # Default: \"public\"\n", |
|
219 | 219 | }, |
220 | 220 | { |
221 | 221 | "cell_type": "code", |
222 | | - "execution_count": null, |
| 222 | + "execution_count": 8, |
223 | 223 | "metadata": { |
224 | 224 | "colab": { |
225 | 225 | "base_uri": "https://localhost:8080/" |
|
231 | 231 | "source": [ |
232 | 232 | "from langchain_cohere import CohereEmbeddings\n", |
233 | 233 | "\n", |
234 | | - "embedding = CohereEmbeddings()" |
| 234 | + "embedding = CohereEmbeddings(model=\"embed-english-v3.0\")" |
235 | 235 | ] |
236 | 236 | }, |
237 | 237 | { |
|
245 | 245 | }, |
246 | 246 | { |
247 | 247 | "cell_type": "code", |
248 | | - "execution_count": null, |
| 248 | + "execution_count": 9, |
249 | 249 | "metadata": { |
250 | 250 | "id": "z-AZyzAQ7bsf" |
251 | 251 | }, |
|
254 | 254 | "from langchain_postgres import PGVectorStore\n", |
255 | 255 | "\n", |
256 | 256 | "store = await PGVectorStore.create(\n", |
257 | | - " engine=engine,\n", |
| 257 | + " engine=pg_engine,\n", |
258 | 258 | " table_name=TABLE_NAME,\n", |
259 | 259 | " # schema_name=SCHEMA_NAME,\n", |
260 | 260 | " embedding_service=embedding,\n", |
|
272 | 272 | }, |
273 | 273 | { |
274 | 274 | "cell_type": "code", |
275 | | - "execution_count": null, |
| 275 | + "execution_count": 11, |
276 | 276 | "metadata": {}, |
277 | 277 | "outputs": [], |
278 | 278 | "source": [ |
|
298 | 298 | "store_with_documents = await PGVectorStore.afrom_documents(\n", |
299 | 299 | " documents=docs,\n", |
300 | 300 | " ids=ids,\n", |
301 | | - " engine=engine,\n", |
| 301 | + " engine=pg_engine,\n", |
302 | 302 | " table_name=TABLE_NAME,\n", |
303 | | - " # schema_name=SCHEMA_NAME,\n", |
304 | | - " embedding_service=embedding,\n", |
| 303 | + " embedding=embedding,\n", |
305 | 304 | ")" |
306 | 305 | ] |
307 | 306 | }, |
|
389 | 388 | }, |
390 | 389 | { |
391 | 390 | "cell_type": "code", |
392 | | - "execution_count": null, |
| 391 | + "execution_count": 16, |
393 | 392 | "metadata": {}, |
394 | 393 | "outputs": [], |
395 | 394 | "source": [ |
|
408 | 407 | }, |
409 | 408 | { |
410 | 409 | "cell_type": "code", |
411 | | - "execution_count": null, |
| 410 | + "execution_count": 17, |
412 | 411 | "metadata": {}, |
413 | 412 | "outputs": [], |
414 | 413 | "source": [ |
|
424 | 423 | }, |
425 | 424 | { |
426 | 425 | "cell_type": "code", |
427 | | - "execution_count": null, |
| 426 | + "execution_count": 18, |
428 | 427 | "metadata": {}, |
429 | 428 | "outputs": [], |
430 | 429 | "source": [ |
|
444 | 443 | }, |
445 | 444 | { |
446 | 445 | "cell_type": "code", |
447 | | - "execution_count": null, |
| 446 | + "execution_count": 19, |
448 | 447 | "metadata": {}, |
449 | 448 | "outputs": [], |
450 | 449 | "source": [ |
|
454 | 453 | "TABLE_NAME = \"vectorstore_custom\"\n", |
455 | 454 | "# SCHEMA_NAME = \"my_schema\"\n", |
456 | 455 | "\n", |
457 | | - "await engine.ainit_vectorstore_table(\n", |
| 456 | + "await pg_engine.ainit_vectorstore_table(\n", |
458 | 457 | " table_name=TABLE_NAME,\n", |
459 | 458 | " # schema_name=SCHEMA_NAME,\n", |
460 | 459 | " vector_size=VECTOR_SIZE,\n", |
|
464 | 463 | "\n", |
465 | 464 | "# Initialize PGVectorStore\n", |
466 | 465 | "custom_store = await PGVectorStore.create(\n", |
467 | | - " engine=engine,\n", |
| 466 | + " engine=pg_engine,\n", |
468 | 467 | " table_name=TABLE_NAME,\n", |
469 | 468 | " # schema_name=SCHEMA_NAME,\n", |
470 | 469 | " embedding_service=embedding,\n", |
|
578 | 577 | "\n", |
579 | 578 | "# Initialize PGVectorStore\n", |
580 | 579 | "custom_store = await PGVectorStore.create(\n", |
581 | | - " engine=engine,\n", |
| 580 | + " engine=pg_engine,\n", |
582 | 581 | " table_name=TABLE_NAME,\n", |
583 | 582 | " # schema_name=SCHEMA_NAME,\n", |
584 | 583 | " embedding_service=embedding,\n", |
|
685 | 684 | "name": "python", |
686 | 685 | "nbconvert_exporter": "python", |
687 | 686 | "pygments_lexer": "ipython3", |
688 | | - "version": "3.12.3" |
| 687 | + "version": "3.12.8" |
689 | 688 | } |
690 | 689 | }, |
691 | 690 | "nbformat": 4, |
|
0 commit comments