Skip to content

KhryptorGraphics/novacron

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ml-experiment

A machine learning project following the MLE-Star methodology (Model design, Learning pipeline, Evaluation, Systematic testing, Training optimization, Analysis validation, Refinement deployment).

Project Structure

ml-experiment/
├── data/                    # Data storage
│   ├── raw/                # Original, immutable data
│   ├── processed/          # Cleaned and processed data
│   └── external/           # Third-party datasets
├── models/                 # Trained models and artifacts
├── notebooks/              # Jupyter notebooks for exploration
│   ├── 01_model_design.ipynb
│   ├── 02_training_pipeline.ipynb
│   ├── 03_model_evaluation.ipynb
│   ├── 04_hyperparameter_tuning.ipynb
│   ├── 05_model_analysis.ipynb
│   └── 06_deployment.ipynb
├── src/                    # Source code
│   ├── data/              # Data processing modules
│   ├── features/          # Feature engineering
│   ├── models/            # Model definitions and training
│   ├── visualization/     # Visualization utilities
│   └── api/               # API endpoints for serving
├── tests/                  # Unit tests
├── configs/                # Configuration files
├── outputs/                # Generated outputs
│   ├── models/            # Saved models
│   ├── figures/           # Generated plots
│   └── reports/           # Analysis reports
├── requirements.txt        # Python dependencies
├── config.yaml            # Main configuration
└── README.md              # This file

MLE-Star Methodology

1. Model Design (M)

  • Define problem statement and success metrics
  • Select appropriate ML algorithms and architectures
  • Design model architecture and components

2. Learning Pipeline (L)

  • Implement data preprocessing and feature engineering
  • Create training and validation pipelines
  • Set up data loaders and transformation pipelines

3. Evaluation (E)

  • Define evaluation metrics and validation strategies
  • Implement comprehensive model evaluation
  • Create performance monitoring and reporting

4. Systematic Testing (S)

  • Implement unit tests for all components
  • Create integration tests for pipelines
  • Add data validation and model testing

5. Training Optimization (T)

  • Implement hyperparameter tuning
  • Optimize training procedures and schedules
  • Add model selection and ensemble methods

6. Analysis Validation (A)

  • Perform model interpretability analysis
  • Validate model assumptions and behavior
  • Generate comprehensive analysis reports

7. Refinement Deployment (R)

  • Refine model based on analysis results
  • Prepare model for deployment
  • Create deployment infrastructure and monitoring

Getting Started

  1. Install Dependencies

    pip install -r requirements.txt
  2. Configure Project Edit configs/config.yaml with your specific settings.

  3. Run MLE-Star Workflow

    # Initialize project (already done)
    claude-flow automation mle-star status
    
    # Run individual stages
    claude-flow automation mle-star stage model_design
    claude-flow automation mle-star stage learning_pipeline
    
    # Or run complete workflow
    claude-flow automation mle-star run

ML Framework: pytorch

This project is configured to use pytorch as the primary ML framework.

Framework-Specific Setup

{{#if (eq mlFramework "pytorch")}} PyTorch Configuration:

  • Version: 1.9.0+
  • GPU Support: Available if CUDA is installed
  • Key Components: torch, torchvision, torch.nn, torch.optim
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader

{{/if}}

{{#if (eq mlFramework "tensorflow")}} TensorFlow Configuration:

  • Version: 2.6.0+
  • GPU Support: Available if CUDA is installed
  • Key Components: tf.keras, tf.data, tf.nn
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

{{/if}}

{{#if (eq mlFramework "scikit-learn")}} Scikit-Learn Configuration:

  • Version: 1.0.0+
  • CPU-optimized machine learning
  • Key Components: sklearn.model_selection, sklearn.metrics
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.ensemble import RandomForestClassifier

{{/if}}

Usage Examples

Running Individual Stages

# Model design stage
claude-flow automation mle-star stage model_design --framework pytorch

# Training pipeline stage
claude-flow automation mle-star stage learning_pipeline

# Model evaluation
claude-flow automation mle-star stage evaluation_setup

Complete Workflow

# Run all stages
claude-flow automation mle-star run --continue-on-error

# Check status
claude-flow automation mle-star status

# Validate environment
claude-flow automation mle-star validate

Deployment

# Deploy as API
claude-flow automation mle-star deploy --service api

# Deploy with Docker
claude-flow automation mle-star deploy --service docker

Configuration

The main configuration is in configs/config.yaml. Key settings include:

  • Data paths: Input and output data directories
  • Model parameters: Architecture and hyperparameters
  • Training settings: Batch size, epochs, learning rate
  • Evaluation metrics: Performance measurement criteria

Development Workflow

  1. Data Explorationnotebooks/01_model_design.ipynb
  2. Pipeline Developmentnotebooks/02_training_pipeline.ipynb
  3. Model Trainingsrc/models/train.py
  4. Evaluationnotebooks/03_model_evaluation.ipynb
  5. Optimizationnotebooks/04_hyperparameter_tuning.ipynb
  6. Analysisnotebooks/05_model_analysis.ipynb
  7. Deploymentnotebooks/06_deployment.ipynb

Testing

Run tests with:

pytest tests/

Generate coverage report:

pytest --cov=src tests/

Contributing

  1. Follow MLE-Star methodology for all changes
  2. Add tests for new functionality
  3. Update documentation
  4. Run validation before submitting

License

[Specify your license here]


Generated with MLE-Star methodology for systematic ML development.

About

A distributed virtual machine management system with advanced VM migration capabilities

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •