|
| 1 | +import pandas as pd |
| 2 | +import faiss |
| 3 | +import numpy as np |
| 4 | + |
| 5 | +from sentence_transformers import SentenceTransformer |
| 6 | + |
| 7 | +import argparse |
| 8 | +import os |
| 9 | + |
| 10 | +def create_index( |
| 11 | + model, |
| 12 | + dataset_path, |
| 13 | + index_path, |
| 14 | + column_name, |
| 15 | + recreate): |
| 16 | + # Load Dataset |
| 17 | + dataset = pd.read_csv(dataset_path) |
| 18 | + |
| 19 | + # Clean Dataset |
| 20 | + dataset = dataset.dropna() |
| 21 | + dataset[column_name] = dataset[column_name].str.strip() |
| 22 | + |
| 23 | + # Create Index or Load it if it already exists |
| 24 | + if os.path.exists(index_path) and not recreate: |
| 25 | + index = faiss.read_index(index_path) |
| 26 | + else: |
| 27 | + # Create Embedding Vectors of Documents |
| 28 | + embeddings = model.encode(dataset[column_name].to_list(), show_progress_bar=True) |
| 29 | + embeddings = np.array([embedding for embedding in embeddings]).astype("float32") |
| 30 | + |
| 31 | + index = faiss.IndexIDMap( |
| 32 | + faiss.IndexFlatL2( |
| 33 | + embeddings.shape[1])) |
| 34 | + |
| 35 | + index.add_with_ids(embeddings, dataset.index.values) |
| 36 | + |
| 37 | + faiss.write_index(index, index_path) |
| 38 | + |
| 39 | + return index, dataset |
| 40 | + |
| 41 | + |
| 42 | +def resolve_column(dataset, Id, column): |
| 43 | + return [list(dataset[dataset.index == idx][column]) for idx in Id[0]] |
| 44 | + |
| 45 | + |
| 46 | +def vector_search(query, index, dataset, column_name, num_results=10): |
| 47 | + query_vector = np.array(query).astype("float32") |
| 48 | + D, Id = index.search(query_vector, k=num_results) |
| 49 | + |
| 50 | + return zip(D[0], Id[0], resolve_column(dataset, Id, column_name)) |
| 51 | + |
| 52 | +if __name__ == '__main__': |
| 53 | + parser = argparse.ArgumentParser(description="Find most suitable match based on users exclude, include preferences") |
| 54 | + parser.add_argument('positives', type=str, help="Terms to find closest match to") |
| 55 | + parser.add_argument('--negatives', '-n', type=str, help="Terms to find farthest match from") |
| 56 | + |
| 57 | + parser.add_argument('--recreate', action='store_true', default=False, help="Recreate index at index_path from dataset at dataset path") |
| 58 | + parser.add_argument('--index', type=str, default="./.faiss_index", help="Path to index for storing vector embeddings") |
| 59 | + parser.add_argument('--dataset', type=str, default="./.dataset", help="Path to dataset to generate index from") |
| 60 | + parser.add_argument('--column', type=str, default="DATA", help="Name of dataset column to index") |
| 61 | + parser.add_argument('--num_results', type=int, default=10, help="Number of most suitable matches to show") |
| 62 | + parser.add_argument('--model_name', type=str, default='paraphrase-distilroberta-base-v1', help="Specify name of the SentenceTransformer model to use for encoding") |
| 63 | + args = parser.parse_args() |
| 64 | + |
| 65 | + model = SentenceTransformer(args.model_name) |
| 66 | + |
| 67 | + if args.positives and not args.negatives: |
| 68 | + # Get index, create it from dataset if doesn't exist |
| 69 | + index, dataset = create_index(model, args.dataset, args.index, args.column, args.recreate) |
| 70 | + |
| 71 | + # Create vector to represent user's stated positive preference |
| 72 | + preference_vector = model.encode([args.positives]) |
| 73 | + |
| 74 | + # Find and display most suitable matches for users preferences in the dataset |
| 75 | + results = vector_search(preference_vector, index, dataset, args.column, args.num_results) |
| 76 | + |
| 77 | + print("Most Suitable Matches:") |
| 78 | + for similarity, id_, data in results: |
| 79 | + print(f"Id: {id_}\nSimilarity: {similarity}\n{args.column}: {data[0]}") |
| 80 | + |
| 81 | + elif args.positives and args.negatives: |
| 82 | + # Get index, create it from dataset if doesn't exist |
| 83 | + index, dataset = create_index(model, args.dataset, args.index, args.column, args.recreate) |
| 84 | + |
| 85 | + # Create vector to represent user's stated preference |
| 86 | + positives_vector = np.array(model.encode([args.positives])).astype("float32") |
| 87 | + negatives_vector = np.array(model.encode([args.negatives])).astype("float32") |
| 88 | + |
| 89 | + # preference_vector = np.mean([positives_vector, -1 * negatives_vector], axis=0) |
| 90 | + preference_vector = np.add(positives_vector, -1 * negatives_vector) |
| 91 | + |
| 92 | + # Find and display most suitable matches for users preferences in the dataset |
| 93 | + results = vector_search(preference_vector, index, dataset, args.column, args.num_results) |
| 94 | + |
| 95 | + print("Most Suitable Matches:") |
| 96 | + for similarity, id_, data in results: |
| 97 | + print(f"Id: {id_}\nSimilarity: {similarity}\n{args.column}: {data[0]}") |
0 commit comments