Skip to content

kaito-project/kaito-rag-api

Repository files navigation

KAITO RAG Engine Client

PyPI version Python Support License

A Python client library for interacting with the KAITO RAGEngine API. This client is generated using the openapi-python-client project against the KAITO RAGEngine OpenAPI spec.

Client Generation

The OpenAPI spec for the KAITO RAGEngine is generated from the FastAPI service the RAGEngine runs. To regenerate this client, first download the openapi.json file from a running RAGEngine Service at <RAG_Engine_Service_Endpoint>/openapi.json. Save the file into the repo and run make generate-client

About KAITO

KAITO (Kubernetes AI Toolchain Operator) is an operator that automates AI/ML model inference workloads in Kubernetes clusters. The RAGEngine component provides powerful Retrieval-Augmented Generation capabilities, combining large language models with information retrieval systems for enhanced, context-aware responses.

Features

  • πŸ” Document Management: Index, update, delete, and list documents
  • πŸ“Š Index Operations: Create, persist, load, and delete indexes
  • πŸ€– RAG Queries: Perform retrieval-augmented generation queries
  • πŸ’¬ Chat Completions: OpenAI-compatible chat interface with RAG support
  • πŸ”§ Code-Aware Splitting: Support for code documents with language-specific chunking
  • 🎯 Metadata Filtering: Filter documents by custom metadata
  • πŸ“– Comprehensive API: Full coverage of KAITO RAGEngine REST API

Integration with KAITO

This client is designed to work with KAITO RAGEngine deployments. To set up a KAITO RAGEngine in your Kubernetes cluster:

  1. Install KAITO operator in your cluster
  2. Deploy a RAGEngine custom resource
  3. Use the service endpoint as your base_url

For detailed setup instructions, see the KAITO documentation.

Usage

For sync usage, you need to create a Client and pass it into the desired api's as follows:

from kaito_rag_engine_client import Client
from kaito_rag_engine_client.api.chat import chat
from kaito_rag_engine_client.models import IndexRequest, Document, UpdateDocumentRequest, DeleteDocumentRequest, ChatRequest
from kaito_rag_engine_client.api.index import list_indexes, create_index, delete_index, list_documents_in_index, delete_documents_in_index, update_documents_in_index, persist_index, load_index

client = Client(base_url="http://api.example.com")

# List all indexes
indexes = list_indexes.sync(client=client)

#Create Index Request
resp = create_index.sync(client=client,body=IndexRequest(
    index_name="test_index",
    documents=[
        Document(
            text="Sample document text",
            metadata={"source": "unit_test"}
        )
    ]
))

# Delete Index Request
delete_resp = delete_index.sync(client=client, index_name="test_index")

# Persist Index Request
persist_index_resp = persist_index.sync(
    client=client,
    index_name="test_index"
)

# Load Index Request
load_index_resp = load_index.sync(
    client=client,
    index_name="test_index",
    overwrite=True
)

# List Documents In Index Request
list_resp = list_documents_in_index.sync(client=client, index_name="test_index")

# Update a Documents text
test_doc = list_resp.documents[0]
test_doc.text = "Updated document text"

# Update Documents Request
update_resp = update_documents_in_index.sync(
    client=client,
    index_name="test_index",
    body=UpdateDocumentRequest(
        documents=[
            test_doc
        ]
    )
)

# Delete Documents Request
delete_doc_resp = delete_documents_in_index.sync(
    client=client,
    index_name="test_index",
    body=DeleteDocumentRequest(
        doc_ids=[
            test_doc.doc_id
        ]
    )
)

# Chat Completions Request
chat_resp = chat.sync(client=client, body=ChatRequest.from_dict({
        "index_name": "test_index",
        "model": "<Your Model>",
        "messages": [{"role": "user", "content": "What can you tell me about AI?"}],
        "temperature": 0.7,
        "max_tokens": 100,
    }
))

Or do the same thing with an async version:

from kaito_rag_engine_client import Client
from kaito_rag_engine_client.api.chat import chat
from kaito_rag_engine_client.models import IndexRequest, Document, UpdateDocumentRequest, DeleteDocumentRequest, ChatRequest
from kaito_rag_engine_client.api.index import list_indexes, create_index, delete_index, list_documents_in_index, delete_documents_in_index, update_documents_in_index, persist_index, load_index

client = Client(base_url="http://api.example.com")

# List all indexes
indexes = await list_indexes.asyncio(client=client)

#Create Index Request
resp = await create_index.asyncio(client=client,body=IndexRequest(
    index_name="test_index",
    documents=[
        Document(
            text="Sample document text",
            metadata={"source": "unit_test"}
        )
    ]
))

# Delete Index Request
delete_resp = await delete_index.asyncio(client=client, index_name="test_index")

# Persist Index Request
persist_index_resp = await persist_index.asyncio(
    client=client,
    index_name="test_index"
)

# Load Index Request
load_index_resp = await load_index.asyncio(
    client=client,
    index_name="test_index",
    overwrite=True
)

# List Documents In Index Request
list_resp = await list_documents_in_index.asyncio(client=client, index_name="test_index")

# Update a Documents text
test_doc = list_resp.documents[0]
test_doc.text = "Updated document text"

# Update Documents Request
update_resp = await update_documents_in_index.asyncio(
    client=client,
    index_name="test_index",
    body=UpdateDocumentRequest(
        documents=[
            test_doc
        ]
    )
)

# Delete Documents Request
delete_doc_resp = await delete_documents_in_index.asyncio(
    client=client,
    index_name="test_index",
    body=DeleteDocumentRequest(
        doc_ids=[
            test_doc.doc_id
        ]
    )
)

# Chat Completions Request
chat_resp = await chat.asyncio(client=client, body=ChatRequest.from_dict({
        "index_name": "test_index",
        "model": "<YOUR_MODEL>",
        "messages": [{"role": "user", "content": "What can you tell me about AI?"}],
        "temperature": 0.7,
        "max_tokens": 100,
    }
))

By default, when you're calling an HTTPS API it will attempt to verify that SSL is working correctly. Using certificate verification is highly recommended most of the time, but sometimes you may need to authenticate to a server (especially an internal server) using a custom certificate bundle.

client = AuthenticatedClient(
    base_url="https://internal_api.example.com", 
    token="SuperSecretToken",
    verify_ssl="/path/to/certificate_bundle.pem",
)

You can also disable certificate validation altogether, but beware that this is a security risk.

client = AuthenticatedClient(
    base_url="https://internal_api.example.com", 
    token="SuperSecretToken", 
    verify_ssl=False
)

Things to know:

  1. Every path/method combo becomes a Python module with four functions:

    1. sync: Blocking request that returns parsed data (if successful) or None
    2. sync_detailed: Blocking request that always returns a Request, optionally with parsed set if the request was successful.
    3. asyncio: Like sync but async instead of blocking
    4. asyncio_detailed: Like sync_detailed but async instead of blocking
  2. All path/query params, and bodies become method arguments.

  3. If your endpoint had any tags on it, the first tag will be used as a module name for the function (my_tag above)

  4. Any endpoint which did not have a tag will be in kaito_rag_client.api.default

Advanced customizations

There are more settings on the generated Client class which let you control more runtime behavior, check out the docstring on that class for more info. You can also customize the underlying httpx.Client or httpx.AsyncClient (depending on your use-case):

from kaito_rag_client import Client

def log_request(request):
    print(f"Request event hook: {request.method} {request.url} - Waiting for response")

def log_response(response):
    request = response.request
    print(f"Response event hook: {request.method} {request.url} - Status {response.status_code}")

client = Client(
    base_url="https://api.example.com",
    httpx_args={"event_hooks": {"request": [log_request], "response": [log_response]}},
)

# Or get the underlying httpx client to modify directly with client.get_httpx_client() or client.get_async_httpx_client()

You can even set the httpx client directly, but beware that this will override any existing settings (e.g., base_url):

import httpx
from kaito_rag_engine_client import Client

client = Client(
    base_url="https://api.example.com",
)
# Note that base_url needs to be re-set, as would any shared cookies, headers, etc.
client.set_httpx_client(httpx.Client(base_url="https://api.example.com", proxies="http://localhost:8030"))

License

This project is licensed under the Apache License 2.0. See the LICENSE file for details.

Support

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •