@@ -11240,6 +11240,115 @@ def _load_model(self, model_name, sample=False, temperature=0.0, get_logits=Fals
1124011240 return True
1124111241
1124211242
11243+ class MultiModalModel :
11244+ """A class to handle multi-modal models, supporting text, image, and other data types."""
11245+
11246+ def __init__ (self , model_name , model_type , preprocessors = None , postprocessors = None ):
11247+ self .model_name = model_name
11248+ self .model_type = model_type
11249+ self .preprocessors = preprocessors or {}
11250+ self .postprocessors = postprocessors or {}
11251+
11252+ def add_preprocessor (self , data_type , preprocessor ):
11253+ """Add a preprocessor for a specific data type."""
11254+ self .preprocessors [data_type ] = preprocessor
11255+
11256+ def add_postprocessor (self , data_type , postprocessor ):
11257+ """Add a postprocessor for a specific data type."""
11258+ self .postprocessors [data_type ] = postprocessor
11259+
11260+ def preprocess (self , data_type , data ):
11261+ """Preprocess data based on its type."""
11262+ if data_type in self .preprocessors :
11263+ return self .preprocessors [data_type ](data )
11264+ return data
11265+
11266+ def postprocess (self , data_type , data ):
11267+ """Postprocess data based on its type."""
11268+ if data_type in self .postprocessors :
11269+ return self .postprocessors [data_type ](data )
11270+ return data
11271+
11272+ def inference (self , inputs ):
11273+ """Perform inference on multi-modal inputs."""
11274+ processed_inputs = {
11275+ data_type : self .preprocess (data_type , data )
11276+ for data_type , data in inputs .items ()
11277+ }
11278+ # Placeholder for model inference logic
11279+ raw_outputs = self ._run_model (processed_inputs )
11280+ return {
11281+ data_type : self .postprocess (data_type , output )
11282+ for data_type , output in raw_outputs .items ()
11283+ }
11284+
11285+ def _run_model (self , inputs ):
11286+ """Run the model on preprocessed inputs based on the model type."""
11287+ if not hasattr (self , 'model' ) or self .model is None :
11288+ raise ValueError ("Model is not loaded. Please load a model before running inference." )
11289+
11290+ if self .model_type == "pytorch" :
11291+ # PyTorch inference
11292+ import torch
11293+ input_tensors = {
11294+ data_type : torch .tensor (data ) if isinstance (data , list ) else torch .from_numpy (data )
11295+ for data_type , data in inputs .items ()
11296+ }
11297+ with torch .no_grad ():
11298+ outputs = {
11299+ data_type : self .model (input_tensor .unsqueeze (0 ))
11300+ for data_type , input_tensor in input_tensors .items ()
11301+ }
11302+ return {data_type : output .squeeze (0 ).numpy () for data_type , output in outputs .items ()}
11303+
11304+ elif self .model_type == "onnx" :
11305+ # ONNX inference
11306+ import onnxruntime as ort
11307+ session = ort .InferenceSession (self .model )
11308+ outputs = {
11309+ data_type : session .run (None , {session .get_inputs ()[0 ].name : data })[0 ]
11310+ for data_type , data in inputs .items ()
11311+ }
11312+ return outputs
11313+
11314+ elif self .model_type == "openvino" :
11315+ # OpenVino inference
11316+ from openvino .runtime import Core
11317+ core = Core ()
11318+ compiled_model = core .compile_model (self .model , "CPU" )
11319+ outputs = {
11320+ data_type : compiled_model ([data ])[0 ]
11321+ for data_type , data in inputs .items ()
11322+ }
11323+ return outputs
11324+
11325+ elif self .model_type == "gguf" :
11326+ # GGUF inference (example placeholder)
11327+ # Assuming GGUF uses a specific library for inference
11328+ from llmware .gguf_configs import GGUFInference
11329+ gguf_inference = GGUFInference (self .model )
11330+ outputs = {
11331+ data_type : gguf_inference .run (data )
11332+ for data_type , data in inputs .items ()
11333+ }
11334+ return outputs
11335+
11336+ elif self .model_type == "tensorflow" :
11337+ # TensorFlow inference
11338+ import tensorflow as tf
11339+ input_tensors = {
11340+ data_type : tf .convert_to_tensor (data ) if isinstance (data , list ) else tf .constant (data )
11341+ for data_type , data in inputs .items ()
11342+ }
11343+ outputs = {
11344+ data_type : self .model (input_tensor [None , ...])
11345+ for data_type , input_tensor in input_tensors .items ()
11346+ }
11347+ return {data_type : output .numpy () for data_type , output in outputs .items ()}
11348+
11349+ else :
11350+ raise ValueError (f"Unsupported model type: { self .model_type } " )
11351+
1124311352class PyTorchLoader :
1124411353
1124511354 """ PyTorchLoader is a wrapper class that consolidates all of the PyTorch model loading functions
0 commit comments