|
| 1 | +# Torus-based compression |
| 2 | + |
| 3 | +We implement a torus-based compression method to compress an output of the pairing computation for the BN254 curve (viewed as an element in a degree 12 extension $\mathbb{F}_{q^{12}}$ over the base prime field $\mathbb{F}_q$) to two elements in a degree 2 sub-extension over the same prime field, thus achieving a threefold compression ratio with no information loss. In other words, the decompressed value recovers exactly the pairing value computed without compression. |
| 4 | + |
| 5 | +Recall that the pairing computation follows two steps - the Miller loop and the final exponentiation. The compression method requires only making changes to the final exponentiation step. The compression overhead turns out to be insignificant for applications in Jolt. |
| 6 | + |
| 7 | +# Methodology |
| 8 | +The pairing output has the form $f^{\frac{q^{12}-1}{r}}$, where $f \in \mathbb{F}_{q^{12}}$ is the output from the Miller loop, and $r$ is an integer such that the pairing inputs are $r$-torsion points on the BN254 curve defined over some finite extension of $\mathbb{F}_q$ - in other words, the $r^{\text{th}}$ power vanishes. We can write |
| 9 | + |
| 10 | +$$ |
| 11 | +f^{\frac{q^{12}-1}{r}} = \Psi_6(q^2)\frac{\Phi_6(q^2)}{r}, |
| 12 | +$$ |
| 13 | +where |
| 14 | + |
| 15 | +$$ |
| 16 | +\Phi_6(x) = x^2 - x + 1 |
| 17 | +$$ |
| 18 | +is the $6^{\text{th}}$ cyclotomic polynomial and |
| 19 | + |
| 20 | +$$ |
| 21 | +\Psi_6(x) = \frac{x^6 - 1}{\Phi_6(x)} = (x^3 + 1)(x + 1). |
| 22 | +$$ |
| 23 | + |
| 24 | +Let $\xi \in \mathbb{F}_{q^2}$ be a sextic non-residue and identify |
| 25 | +$$\mathbb{F}_{q^6} = \mathbb{F}_{q^2}(\xi^{\frac{1}{3}}) = \mathbb{F}_{q^2}(\tau)$$ |
| 26 | +and |
| 27 | +$$\mathbb{F}_{q^{12}} = \mathbb{F}_{q^6}(\xi^{\frac{1}{2}}) = \mathbb{F}_{q^6}(\sigma),$$ |
| 28 | +where $\tau = \xi^{\frac{1}{3}}$ and $\sigma = \xi^{\frac{1}{2}}$. Through this notation, we emphasise that the sets $\{1, \tau\}$ and $\{1, \sigma\}$ form $\mathbb{F}_{q^2}$-linear and $\mathbb{F}_{q^6}$-linear bases of the fields $\mathbb{F}_{q^6}$ and $\mathbb{F}_{q^{12}}$ viewed as vector spaces, respectively. |
| 29 | + |
| 30 | +<!-- For example, each element $a \in \mathbb{F}_{q^{12}}$ is uniquely represented as $a = a_0 + a_1\sigma$ where the coefficients $a_i$ are in $\mathbb{F}_{q^6}$, and multiplication is implemented --> |
| 31 | + |
| 32 | +It turns out that for each element $f \in \mathbb{F}_{q^{12}}$, the power $f^{\Psi_6(q^2)}$ can be written as |
| 33 | + |
| 34 | +$$ |
| 35 | +f^{\Psi_6(q^2)} = \frac{b + \sigma}{b - \sigma}, |
| 36 | +$$ |
| 37 | +where $b = c_0 + c_1\tau + c_2\tau^2 \in \mathbb{F}_6$, $c_i \in \mathbb{F}_2$, and we can recover $c_2$ from $c_0$ and $c_1$ alone. |
| 38 | + |
| 39 | +Hence we can represent $f^{\Psi_6(q^2)}$ using the pair $(c_0, c_1)$ achieving a compression ratio of three, where the compression takes two steps in which we compress to the field $\mathbb{F}_{q^6}$ and $\mathbb{F}_{q^2}$, respectively. |
| 40 | + |
| 41 | +## Compression to $\mathbb{F}_{q^6}$ |
| 42 | + |
| 43 | +We can compute $f^{\Psi_6(q^2)}$ as |
| 44 | + |
| 45 | +$$ |
| 46 | +f^{\Psi_6(q^2)} = f^{(q^6 - 1)(q^2 + 1)} = (f^{q^6 - 1})^{q^2 + 1}. |
| 47 | +$$ |
| 48 | + |
| 49 | +Write $f = a_0 + a_1\sigma$, where $a_i \in \mathbb{F}_{q^6}$, we have |
| 50 | + |
| 51 | +$$ |
| 52 | +f^{q^6 - 1} = \frac{(a_0 + a_1\sigma)^{q^6}}{a_0 + a_1\sigma} = \frac{(a_0 - a_1\sigma)}{a_0 + a_1\sigma} = \frac{\tilde{a} - \sigma}{\tilde{a} + \sigma}, |
| 53 | +$$ |
| 54 | + |
| 55 | +where $\tilde{a} = \frac{a_0}{a_1}$ and the second equality follows since the $q^2$-power map generates the Galois group of the quadratic extension $\mathbb{F}_{q^{2}}(\sigma)/\mathbb{F}_{q^2}$ inside $\mathbb{F}_{q^{12}}$, so in particular $\sigma^{q^6} = -\sigma$. Hence |
| 56 | + |
| 57 | +$$ |
| 58 | +(f^{q^6 - 1})^{q^2 + 1} = \frac{\tilde{a} - \sigma}{\tilde{a} + \sigma}(\frac{\tilde{a} - \sigma}{\tilde{a} + \sigma})^{q^2} = \frac{\tilde{a} - \sigma}{\tilde{a}^{q^2} + \sigma}\cdot\frac{\tilde{a} + \sigma}{\tilde{a}^{q^2} - \sigma} = \frac{\tilde{a} - \sigma}{\tilde{a} + \sigma}\cdot\frac{-\tilde{a}^{q^2} - \sigma}{-\tilde{a}^{q^2} + \sigma}, |
| 59 | +$$ |
| 60 | +which simplifies to |
| 61 | +$$ |
| 62 | +(f^{q^6 - 1})^{q^2 + 1} = \frac{\tilde{\beta} - \sigma}{\tilde{\beta} + \sigma}, |
| 63 | +$$ |
| 64 | +where |
| 65 | +$$ |
| 66 | +\tilde{\beta} = \frac{-\tilde{a}^{q+1} + \xi}{-\tilde{a}^q + \tilde{a}} \in \mathbb{F}_{q^6}. |
| 67 | +$$ |
| 68 | + |
| 69 | + |
| 70 | +## Compression to two elements in $\mathbb{F}_{q^2}$ |
| 71 | + |
| 72 | +We can write $\tilde{\beta} = c_0 + c_1\tau + c_2\tau^2$, where recall $\tau = \xi^{\frac{1}{3}}$, then we have |
| 73 | + |
| 74 | +$$ |
| 75 | +c_2 = \frac{3c_0^2 + \xi}{3c_1\xi}, |
| 76 | +$$ |
| 77 | +so we can drop $c_2$ to only use $c_0$ and $c_1$ to represent $\tilde{\beta}$. |
| 78 | + |
| 79 | +## Compression and decompression |
| 80 | +For compressing a pairing value $a^{\frac{q^{12} - 1}{r}}$, first compute $f = a^{\Phi_6(q^2)}$, then compress $f^{\Psi_6(q^2)}$ to two $\mathbb{F}_{q^2}$ elements as in the previous section. |
| 81 | + |
| 82 | +For decompression, first compute $\tilde{\beta} \in \mathbb{F}_{q^6}$ from two coefficients $c_0$ and $c_1$ in $\mathbb{F}_{q^2}$, where $\tilde{\beta} = c_0 + c_1\tau + c_2\tau^2$ as in the previous section. Then, compute |
| 83 | +$$ |
| 84 | +a^{\frac{q^{12} - 1}{r}} = \frac{\tilde{\beta} - \sigma}{\tilde{\beta} + \sigma} |
| 85 | +$$to recover the original pairing value. |
| 86 | +
|
| 87 | +# Implementation Detail |
| 88 | +
|
| 89 | +## Basis choice |
| 90 | +Different choices of basis vectors for an extension field affect the complexity of field operations within the extension field. In Arkworks, for field arithmetic optimization, the field $\mathbb{F}_{q^{12}}$ is represented as an extension $\mathbb{F}_{q^2}(\tau, \sigma^{\frac{1}{3}})$, where $\{1, \sigma\}$ is an $\mathbb{F}_{q^6}$-basis over the sub-extension $\mathbb{F}_{q^2}(\tau) = \mathbb{F}_{q^6}$. (Recall that $\tau = \xi^{\frac{1}{3}}$ and $\sigma = \xi^{\frac{1}{2}}$, where $\xi \in \mathbb{F}_{q^2}$ is a sextic non-residue.) |
| 91 | +
|
| 92 | +The $q^2$-power map no longer maps $\sigma^{\frac{1}{3}}$ to $-\sigma^{\frac{1}{3}}$, so naively applying the formula in the previous section on the generator $\sigma^{\frac{1}{3}}$ will cause problems. Fortunately, we can fix this easily by doing a change of basis before compression and after decompression. |
| 93 | +
|
| 94 | +Using the identity $\tau = \sigma^{\frac{2}{3}}$, we have |
| 95 | +
|
| 96 | +$$ |
| 97 | +a + b\sigma = a + (b\sigma^{\frac{2}{3}})\sigma^{\frac{1}{3}} = a + (b\tau)\sigma^{\frac{1}{3}} |
| 98 | +$$ |
| 99 | +
|
| 100 | +and hence |
| 101 | +
|
| 102 | +$$ |
| 103 | +a + b\sigma^{\frac{1}{3}} = a + (b\tau^{-1})\sigma, |
| 104 | +$$ |
| 105 | +
|
| 106 | +where $a$, $b$, and $\tau$ all are elements of $\mathbb{F}_{q^6} = \mathbb{F}_{q^2}(\tau)$. To convert between elements in $\mathbb{F}_{q^{12}}$ written in $\mathbb{F}_{q^6}$-bases $\{1, \sigma\}$ and $\{1, \sigma^{\frac{1}{3}}\}$, it suffices to do a multiplication or division by $\tau$, and we shall see this can be implemented entirely using arithmetics in $\mathbb{F}_{q^2}$. |
| 107 | +
|
| 108 | +Indeed, write $b = c_0 + c_1\tau + c_2\tau^2$, where $c_i \in \mathbb{F}_{q^2}$, we have |
| 109 | +
|
| 110 | +$$ |
| 111 | +b\tau = c_2\xi + c_0\tau + c_1\tau^2, |
| 112 | +$$ |
| 113 | +
|
| 114 | +and |
| 115 | +
|
| 116 | +$$ |
| 117 | +b\tau^{-1} = c_1 + c_2\tau + c_0\xi^{-1}\tau^2. |
| 118 | +$$ |
| 119 | +The conversion formulae are provided in the following code snippet. |
| 120 | +
|
| 121 | +```rust |
| 122 | +#[inline] |
| 123 | +pub fn fq12_to_compressible_fq12(value: Fq12) -> CompressibleFq12 { |
| 124 | + // Divide by the generator of Fq6 |
| 125 | + let new_c1 = Fq6 { |
| 126 | + c0: value.c1.c1, |
| 127 | + c1: value.c1.c2, |
| 128 | + c2: value.c1.c0 * Fq6Config::NONRESIDUE.inverse().unwrap(), |
| 129 | + }; |
| 130 | +
|
| 131 | + CompressibleFq12 { |
| 132 | + c0: value.c0, |
| 133 | + c1: new_c1, |
| 134 | + } |
| 135 | +} |
| 136 | +
|
| 137 | +#[inline] |
| 138 | +pub fn compressible_fq12_to_fq12(value: CompressibleFq12) -> Fq12 { |
| 139 | + // Multiply by the generator of Fq6 |
| 140 | + let new_c1 = Fq6 { |
| 141 | + c0: value.c1.c2 * Fq6Config::NONRESIDUE, |
| 142 | + c1: value.c1.c0, |
| 143 | + c2: value.c1.c1, |
| 144 | + }; |
| 145 | +
|
| 146 | + Fq12 { |
| 147 | + c0: value.c0, |
| 148 | + c1: new_c1, |
| 149 | + } |
| 150 | +} |
| 151 | +``` |
0 commit comments