|
2 | 2 | "cells": [
|
3 | 3 | {
|
4 | 4 | "cell_type": "code",
|
5 |
| - "execution_count": 2, |
| 5 | + "execution_count": 7, |
6 | 6 | "metadata": {
|
7 | 7 | "scrolled": true
|
8 | 8 | },
|
|
15 | 15 | },
|
16 | 16 | {
|
17 | 17 | "cell_type": "code",
|
18 |
| - "execution_count": 17, |
| 18 | + "execution_count": 8, |
19 | 19 | "metadata": {
|
20 | 20 | "scrolled": true
|
21 | 21 | },
|
22 |
| - "outputs": [ |
23 |
| - { |
24 |
| - "name": "stdout", |
25 |
| - "output_type": "stream", |
26 |
| - "text": [ |
27 |
| - "Int64Index([36200, 36600, 37000, 37400, 37800, 38200, 38600, 39000, 39400,\n", |
28 |
| - " 40200, 40600, 41000, 41400, 41800, 42600, 43000, 43400, 43800,\n", |
29 |
| - " 44200, 44600, 45000, 45400, 45800, 46200, 46600, 47000, 47400,\n", |
30 |
| - " 47800, 48200, 48600, 49000, 49400, 49800, 50200, 50600, 51000,\n", |
31 |
| - " 51400, 51800, 52200, 52600, 53000, 53400, 53800, 54200, 54600,\n", |
32 |
| - " 55000, 55400, 55800, 56200, 56600, 57000, 57400, 57800, 58200,\n", |
33 |
| - " 58600, 59000, 59400, 59800, 60200, 60600, 61000],\n", |
34 |
| - " dtype='int64', name='origin_config')\n" |
35 |
| - ] |
36 |
| - } |
37 |
| - ], |
| 22 | + "outputs": [], |
38 | 23 | "source": [
|
39 | 24 | "# Results of 100 different .config compilations using kernel_generator.py\n",
|
| 25 | + "def get_df_tuxml(exp):\n", |
| 26 | + " \n", |
| 27 | + " df=pd.read_pickle(\"../Exp{}/DF{}_kernel_gen\".format(exp, exp))\n", |
| 28 | + " #df=pd.read_pickle('../analysis/results_latest_2')\n", |
40 | 29 | "\n",
|
41 |
| - "#df=pd.read_pickle('results')\n", |
42 |
| - "df=pd.read_pickle('../Exp2/DF2_kernel_gen')\n", |
43 |
| - "#df=pd.read_pickle('results2')\n", |
| 30 | + " df=df.sort_values(by=['compiled_kernel_size'])\n", |
| 31 | + " df2=df.groupby(['origin_config']).agg({'compilation_time':['mean', 'std'], 'compiled_kernel_size':'first'})\n", |
| 32 | + " #print(df2.to_string())\n", |
| 33 | + " #print(df2)\n", |
44 | 34 | "\n",
|
45 |
| - "df=df.sort_values(by=['compiled_kernel_size'])\n", |
46 |
| - "df2=df.groupby(['origin_config']).agg({'compilation_time':['mean', 'std'], 'compiled_kernel_size':'first'})\n", |
47 |
| - "#print(df2.to_string())\n", |
48 |
| - "#print(df2)\n", |
| 35 | + " df3=pd.DataFrame({'origin_config': df2.index,\n", |
| 36 | + " 'Time': df2[('compilation_time', 'mean')],\n", |
| 37 | + " 'Size': df2[('compiled_kernel_size', 'first')]})\n", |
| 38 | + " df3=df3.set_index('origin_config')\n", |
| 39 | + " \n", |
| 40 | + " return df3" |
| 41 | + ] |
| 42 | + }, |
| 43 | + { |
| 44 | + "cell_type": "code", |
| 45 | + "execution_count": 9, |
| 46 | + "metadata": {}, |
| 47 | + "outputs": [], |
| 48 | + "source": [ |
| 49 | + "# Results of the same 100 .config compilations with the \"native\" method this time\n", |
| 50 | + "def get_df_native(exp):\n", |
| 51 | + " \n", |
| 52 | + " with open(\"../Exp{}/sample{}_native.txt\".format(exp, exp), \"r\") as f:\n", |
| 53 | + " res=list()\n", |
| 54 | + " #Parsing\n", |
| 55 | + " for line in f:\n", |
| 56 | + " time=float(line.split(\"ELAPSEDTIME \")[1].split(\" vmlinux size :\")[0])\n", |
| 57 | + " if(line.split(\" vmlinux size :\")[1]!='\\n'):\n", |
| 58 | + " size=int(line.split(\" vmlinux size :\")[1].strip('\\n').strip(' '))\n", |
| 59 | + " else:\n", |
| 60 | + " size=None\n", |
| 61 | + " original=int(line.split(\".config\")[0][-5:])\n", |
| 62 | + " res.append([original, time, size])\n", |
49 | 63 | "\n",
|
50 |
| - "df3=pd.DataFrame({'origin_config': df2.index,\n", |
51 |
| - " 'mean time': df2[('compilation_time', 'mean')],\n", |
52 |
| - " 'size': df2[('compiled_kernel_size', 'first')]})\n", |
53 |
| - "df3=df3.set_index('origin_config')\n", |
54 |
| - "print(df3.index)\n", |
| 64 | + " #Dataframe creation\n", |
| 65 | + " df1=pd.DataFrame(res, columns = ['origin_config', 'Time', 'Size'])\n", |
| 66 | + " #df1.to_pickle('DF2_native')\n", |
55 | 67 | "\n",
|
56 |
| - "#print(df5.to_string())\n", |
57 |
| - "#df5.plot(x='mean time', y='size')\n" |
| 68 | + " df2=df1.groupby(['origin_config']).agg({'Time':['mean', 'std'], 'Size':'mean'})\n", |
| 69 | + " df3=pd.DataFrame({'origin_config': df2.index,\n", |
| 70 | + " 'Time': df2[('Time', 'mean')],\n", |
| 71 | + " 'Size': df2[('Size', 'mean')]})\n", |
| 72 | + " df3=df3.set_index('origin_config')\n", |
| 73 | + " #print(df3.to_string())\n", |
| 74 | + " return df3" |
58 | 75 | ]
|
59 | 76 | },
|
60 | 77 | {
|
61 | 78 | "cell_type": "code",
|
62 |
| - "execution_count": 20, |
| 79 | + "execution_count": 13, |
63 | 80 | "metadata": {},
|
64 | 81 | "outputs": [
|
65 | 82 | {
|
66 | 83 | "name": "stdout",
|
67 | 84 | "output_type": "stream",
|
68 | 85 | "text": [
|
69 |
| - " mean time size\n", |
70 |
| - "origin_config \n", |
71 |
| - "30200 433.2264 106632848.0\n", |
72 |
| - "30600 261.6258 231147244.8\n", |
73 |
| - "31000 179.5396 28113552.0\n", |
74 |
| - "31400 328.9364 53153472.0\n", |
75 |
| - "31800 387.8592 152092144.0\n", |
76 |
| - "32200 256.8882 28356144.0\n", |
77 |
| - "32600 181.9954 37490392.0\n", |
78 |
| - "33000 421.4666 71890464.0\n", |
79 |
| - "33400 574.8874 35048016.0\n", |
80 |
| - "33800 445.9130 77511720.0\n", |
81 |
| - "34200 538.4574 462156899.2\n", |
82 |
| - "34600 493.0494 40126030.4\n", |
83 |
| - "35000 397.1588 88116408.0\n", |
84 |
| - "35400 272.0082 43481264.0\n", |
85 |
| - "35800 964.6366 135643588.8\n", |
86 |
| - "36200 666.6348 169541668.8\n", |
87 |
| - "36600 303.7820 52101632.0\n", |
88 |
| - "37000 371.6974 88673011.2\n", |
89 |
| - "37400 300.6670 82337992.0\n", |
90 |
| - "37800 427.4954 39694424.0\n", |
91 |
| - "38200 645.1098 114969547.2\n", |
92 |
| - "38600 345.0022 42888968.0\n", |
93 |
| - "39000 390.6540 119714476.8\n", |
94 |
| - "39400 425.8820 33205560.0\n", |
95 |
| - "40200 346.3672 154356288.0\n", |
96 |
| - "40600 537.4268 42456448.0\n", |
97 |
| - "41000 331.4610 44387448.0\n", |
98 |
| - "41400 339.8234 70184944.0\n", |
99 |
| - "41800 545.0756 227206008.0\n", |
100 |
| - "42600 436.9284 108257854.4\n", |
101 |
| - "43000 380.8074 58229480.0\n", |
102 |
| - "43400 265.7370 34998552.0\n", |
103 |
| - "43800 335.1986 126191257.6\n", |
104 |
| - "44200 777.5630 79777323.2\n", |
105 |
| - "44600 425.9974 63239384.0\n", |
106 |
| - "45000 516.9736 94348694.4\n", |
107 |
| - "45400 248.0862 99450928.0\n", |
108 |
| - "45800 544.6956 109625688.0\n", |
109 |
| - "46200 581.5290 49772648.0\n", |
110 |
| - "46600 396.2276 71657224.0\n", |
111 |
| - "47000 428.8886 31389544.0\n", |
112 |
| - "47400 423.2276 65356916.8\n", |
113 |
| - "47800 704.9782 57452688.0\n", |
114 |
| - "48200 154.0146 25083304.0\n", |
115 |
| - "48600 346.3058 50025960.0\n", |
116 |
| - "49000 277.1510 29537480.0\n", |
117 |
| - "49400 831.3318 38424992.0\n", |
118 |
| - "49800 607.8328 47412056.0\n", |
119 |
| - "50200 348.5304 59910456.0\n", |
120 |
| - "50600 237.5070 35325164.8\n", |
121 |
| - "51000 314.0428 61437568.0\n", |
122 |
| - "51400 736.7562 198437648.0\n", |
123 |
| - "51800 318.1968 42758000.0\n", |
124 |
| - "52200 265.9928 51361096.0\n", |
125 |
| - "52600 481.1386 407618208.0\n", |
126 |
| - "53000 485.0926 59770760.0\n", |
127 |
| - "53400 607.0432 85564972.8\n", |
128 |
| - "53800 985.0180 95446012.8\n", |
129 |
| - "54200 245.8214 43639088.0\n", |
130 |
| - "54600 292.2936 128728688.0\n", |
131 |
| - "55000 337.6216 44601448.0\n", |
132 |
| - "55400 515.2436 50000496.0\n", |
133 |
| - "55800 295.4148 74131912.0\n", |
134 |
| - "56200 464.4414 38885728.0\n", |
135 |
| - "56600 871.9904 277700979.2\n", |
136 |
| - "57000 217.6982 30275840.0\n", |
137 |
| - "57400 298.3656 51292136.0\n", |
138 |
| - "57800 255.1862 211731414.4\n", |
139 |
| - "58200 333.5228 51881688.0\n", |
140 |
| - "58600 523.1972 66703536.0\n", |
141 |
| - "59000 353.9808 94471552.0\n", |
142 |
| - "59400 338.5098 133308064.0\n", |
143 |
| - "59800 335.8498 99093009.6\n", |
144 |
| - "60200 348.8580 31468072.0\n", |
145 |
| - "60600 333.6412 38703616.0\n", |
146 |
| - "61000 577.9040 56857392.0\n", |
147 |
| - "61400 374.2556 358280672.0\n", |
148 |
| - "61800 313.8556 60979584.0\n", |
149 |
| - "62200 672.9236 52487512.0\n", |
150 |
| - "62600 350.7826 50653472.0\n", |
151 |
| - "63000 551.1378 142754680.0\n", |
152 |
| - "63400 226.0440 33596424.0\n", |
153 |
| - "63800 378.5166 92448312.0\n", |
154 |
| - "64200 243.6008 44454892.8\n", |
155 |
| - "64600 702.9072 429465600.0\n", |
156 |
| - "65000 779.3068 38693736.0\n", |
157 |
| - "65400 221.5916 47218296.0\n", |
158 |
| - "65800 319.5710 39441624.0\n", |
159 |
| - "66200 237.1180 34626576.0\n", |
160 |
| - "66600 687.2924 41429380.8\n", |
161 |
| - "67000 646.7738 30760624.0\n", |
162 |
| - "67400 254.7066 59247856.0\n", |
163 |
| - "67800 388.0206 66395507.2\n", |
164 |
| - "68200 334.2172 112695584.0\n", |
165 |
| - "68600 643.9154 123727576.0\n", |
166 |
| - "69000 696.9428 39656464.0\n", |
167 |
| - "69400 399.8734 161034416.0\n", |
168 |
| - "69800 430.2208 84615868.8\n", |
169 |
| - "70200 384.6864 78014720.0\n", |
170 |
| - "70600 298.6894 59655616.0\n", |
171 |
| - "71000 1035.0100 73250832.0\n", |
172 |
| - "71400 544.6564 102965112.0\n", |
173 |
| - "71800 314.0600 57441224.0\n" |
| 86 | + " Time Size\n", |
| 87 | + "origin_config \n", |
| 88 | + "30000 311.7458 46271960.0\n", |
| 89 | + "30400 605.2034 28925824.0\n", |
| 90 | + "30800 508.6970 99332603.2\n", |
| 91 | + "31200 546.2142 34301440.0\n", |
| 92 | + "31600 848.8710 47860944.0\n", |
| 93 | + "32000 291.8302 21648808.0\n", |
| 94 | + "32400 658.3678 51112968.0\n", |
| 95 | + "32800 415.1456 75296792.0\n", |
| 96 | + "33200 395.2614 143218864.0\n", |
| 97 | + "33600 543.5856 453572944.0\n", |
| 98 | + "34000 183.9154 32325552.0\n", |
| 99 | + "34400 377.0220 95648024.0\n", |
| 100 | + "34800 478.4378 164779448.0\n", |
| 101 | + "35200 405.4016 76928256.0\n", |
| 102 | + "35600 482.1846 69983536.0\n", |
| 103 | + "36000 205.9464 165070820.8\n", |
| 104 | + "36400 879.8382 124613648.0\n", |
| 105 | + "36800 615.9098 18406392.0\n", |
| 106 | + "37200 426.5924 258087540.8\n", |
| 107 | + "37600 216.6574 38024816.0\n", |
| 108 | + "38000 223.7722 30693249.6\n", |
| 109 | + "38400 314.1286 251817496.0\n", |
| 110 | + "38800 447.5220 35100440.0\n", |
| 111 | + "39200 268.1912 28502160.0\n", |
| 112 | + "39600 181.3206 53031504.0\n", |
| 113 | + "40000 623.7566 60761792.0\n", |
| 114 | + "40400 540.0660 42547152.0\n", |
| 115 | + "40800 482.8874 91397112.0\n", |
| 116 | + "41200 366.6320 32769448.0\n", |
| 117 | + "41600 343.0296 118685360.0\n", |
| 118 | + "42000 305.3772 23018328.0\n", |
| 119 | + "42800 608.7798 115161968.0\n", |
| 120 | + "43200 295.7252 43983616.0\n", |
| 121 | + "43600 363.9634 132119304.0\n", |
| 122 | + "44000 341.3238 108973545.6\n", |
| 123 | + "44400 433.9260 41946424.0\n", |
| 124 | + "44800 429.2990 225218724.8\n", |
| 125 | + "45200 401.4292 51954928.0\n", |
| 126 | + "45600 639.8894 97825680.0\n", |
| 127 | + "46000 292.1588 55270680.0\n", |
| 128 | + "46400 285.4406 57947328.0\n", |
| 129 | + "46800 326.4726 48839856.0\n", |
| 130 | + "47200 325.8208 49083264.0\n", |
| 131 | + "47600 503.8336 87720640.0\n", |
| 132 | + "48000 868.3910 43361408.0\n", |
| 133 | + "48400 208.8922 36062283.2\n", |
| 134 | + "48800 318.7248 90543152.0\n", |
| 135 | + "49200 776.3824 39626784.0\n", |
| 136 | + "49600 374.4640 167006275.2\n", |
| 137 | + "50000 694.5652 111862288.0\n", |
| 138 | + "50400 410.1716 59391896.0\n", |
| 139 | + "50800 254.9570 35144176.0\n", |
| 140 | + "51200 950.3438 223516928.0\n", |
| 141 | + "51600 434.0324 49850592.0\n", |
| 142 | + "52000 365.9456 90600368.0\n", |
| 143 | + "52400 448.3018 30831552.0\n", |
| 144 | + "52800 355.5408 88510240.0\n", |
| 145 | + "53200 409.3662 117469648.0\n", |
| 146 | + "53600 405.4774 195047027.2\n", |
| 147 | + "54000 737.5940 89947360.0\n", |
| 148 | + "54400 352.8896 107337664.0\n", |
| 149 | + "54800 417.0938 57918544.0\n", |
| 150 | + "55200 600.9958 142005438.4\n", |
| 151 | + "55600 384.7560 126465160.0\n", |
| 152 | + "56000 365.8692 73732712.0\n", |
| 153 | + "56400 729.5454 44064480.0\n", |
| 154 | + "56800 323.6140 43368400.0\n", |
| 155 | + "57200 910.9798 42062792.0\n", |
| 156 | + "57600 461.5628 170456384.0\n", |
| 157 | + "58000 398.1502 353693728.0\n", |
| 158 | + "58400 738.0966 34103888.0\n", |
| 159 | + "58800 430.0798 70243688.0\n", |
| 160 | + "59200 284.3646 37942248.0\n", |
| 161 | + "59600 453.5318 78271112.0\n", |
| 162 | + "60000 246.6834 55540576.0\n", |
| 163 | + "60400 249.7000 33288408.0\n", |
| 164 | + "60800 435.2276 81967584.0\n", |
| 165 | + "61200 317.1596 562785940.8\n", |
| 166 | + "61600 305.2320 67658792.0\n", |
| 167 | + "62000 238.3072 34593096.0\n", |
| 168 | + "62400 603.8788 72339233.6\n", |
| 169 | + "62800 309.0088 62942368.0\n", |
| 170 | + "63200 274.1922 36322792.0\n", |
| 171 | + "63600 494.6082 123229835.2\n", |
| 172 | + "64000 542.5606 143383364.8\n", |
| 173 | + "64400 344.8828 153394272.0\n", |
| 174 | + "64800 430.7334 74657668.8\n", |
| 175 | + "65200 486.8282 90116296.0\n", |
| 176 | + "65600 488.5370 64467856.0\n", |
| 177 | + "66000 361.5918 24863640.0\n", |
| 178 | + "66400 437.4496 858239977.6\n", |
| 179 | + "66800 292.2982 42631368.0\n", |
| 180 | + "67600 222.6266 51973264.0\n", |
| 181 | + "68000 370.3648 54902680.0\n", |
| 182 | + "68400 462.7976 83876120.0\n", |
| 183 | + "68800 704.4608 137197776.0\n", |
| 184 | + "69200 322.9432 28148104.0\n", |
| 185 | + "69600 367.3140 160797766.4\n", |
| 186 | + "70000 230.4564 32294336.0\n", |
| 187 | + "70400 279.8438 93732408.0\n", |
| 188 | + "70800 528.2392 38951561.6\n", |
| 189 | + "71200 434.9416 68455904.0\n", |
| 190 | + "71600 516.5298 82398448.0\n", |
| 191 | + "72000 304.3370 53850528.0\n", |
| 192 | + "72400 338.2722 166838110.4\n", |
| 193 | + "72800 301.1228 51332577.6\n" |
174 | 194 | ]
|
175 | 195 | }
|
176 | 196 | ],
|
177 | 197 | "source": [
|
178 |
| - "# Results of the same 100 .config compilations with the \"native\" method this time\n", |
179 |
| - "\n", |
180 |
| - "#with open(\"../Exp2/sample2_native.txt\", \"r\") as f:\n", |
181 |
| - "with open(\"../Exp2/sample2_native.txt\", \"r\") as f:\n", |
182 |
| - " res=list()\n", |
183 |
| - " #Parsing\n", |
184 |
| - " for line in f:\n", |
185 |
| - " time=float(line.split(\"ELAPSEDTIME \")[1].split(\" vmlinux size :\")[0])\n", |
186 |
| - " if(line.split(\" vmlinux size :\")[1]!='\\n'):\n", |
187 |
| - " size=int(line.split(\" vmlinux size :\")[1].strip('\\n').strip(' '))\n", |
188 |
| - " else:\n", |
189 |
| - " size=None\n", |
190 |
| - " original=int(line.split(\".config\")[0][-5:])\n", |
191 |
| - " res.append([original, time, size])\n", |
192 |
| - " \n", |
193 |
| - " #Dataframe creation\n", |
194 |
| - " df1=pd.DataFrame(res, columns = ['origin_config', 'Time', 'Size'])\n", |
195 |
| - " #df1.to_pickle('DF2_native')\n", |
| 198 | + "def get_df(exp, nature):\n", |
| 199 | + " #get_df(1, tuxml) for 1st exp with tuxml\n", |
| 200 | + " #get_df(2, native) for 2nd exp with native\n", |
| 201 | + " if(nature==\"tuxml\"):\n", |
| 202 | + " df=get_df_tuxml(exp)\n", |
| 203 | + " elif(nature==\"native\"):\n", |
| 204 | + " df=get_df_native(exp)\n", |
| 205 | + " return df\n", |
196 | 206 | "\n",
|
197 |
| - " df2=df1.groupby(['origin_config']).agg({'Time':['mean', 'std'], 'Size':'mean'})\n", |
198 |
| - " df3=pd.DataFrame({'origin_config': df2.index,\n", |
199 |
| - " 'mean time': df2[('Time', 'mean')],\n", |
200 |
| - " 'size': df2[('Size', 'mean')]})\n", |
201 |
| - " df3=df3.set_index('origin_config')\n", |
202 |
| - " print(df3.to_string())" |
| 207 | + "df=get_df(1, \"native\")\n", |
| 208 | + "print(df.to_string())" |
203 | 209 | ]
|
204 | 210 | },
|
205 | 211 | {
|
|
0 commit comments