|
| 1 | +import logging |
| 2 | +import time |
| 3 | + |
| 4 | +import pandas as pd |
| 5 | +import pytest |
| 6 | +from sklearn import model_selection |
| 7 | +from sklearn.compose import ColumnTransformer |
| 8 | +from sklearn.impute import SimpleImputer |
| 9 | +from sklearn.linear_model import LogisticRegression |
| 10 | +from sklearn.pipeline import Pipeline |
| 11 | +from sklearn.preprocessing import OneHotEncoder |
| 12 | +from sklearn.preprocessing import StandardScaler |
| 13 | +from sklearn.feature_extraction.text import CountVectorizer |
| 14 | +from sklearn.feature_extraction.text import TfidfTransformer |
| 15 | +from nltk.corpus import stopwords |
| 16 | +from string import punctuation |
| 17 | + |
| 18 | +from ml_worker.core.giskard_dataset import GiskardDataset |
| 19 | +from ml_worker.core.model import GiskardModel |
| 20 | +from test import path |
| 21 | + |
| 22 | +input_types = { |
| 23 | + "Subject": "text", |
| 24 | + "Content": "text", |
| 25 | + "Week_day": "category", |
| 26 | + "Month": "category", |
| 27 | + "Hour": "numeric", |
| 28 | + "Nb_of_forwarded_msg": "numeric", |
| 29 | + "Year": "numeric" |
| 30 | + } |
| 31 | + |
| 32 | + |
| 33 | +@pytest.fixture() |
| 34 | +def enron_data() -> GiskardDataset: |
| 35 | + logging.info("Fetching Enron Data") |
| 36 | + return GiskardDataset( |
| 37 | + df=pd.read_csv(path('test_data/enron_data.csv')), |
| 38 | + target='Target', |
| 39 | + feature_types=input_types |
| 40 | + ) |
| 41 | + |
| 42 | + |
| 43 | +@pytest.fixture() |
| 44 | +def enron_test_data(enron_data): |
| 45 | + return GiskardDataset( |
| 46 | + df=pd.DataFrame(enron_data.df).drop(columns=['Target']), |
| 47 | + feature_types=input_types, |
| 48 | + target=None |
| 49 | + ) |
| 50 | + |
| 51 | + |
| 52 | +@pytest.fixture() |
| 53 | +def enron_model(enron_data) -> GiskardModel: |
| 54 | + start = time.time() |
| 55 | + |
| 56 | + stoplist = set(stopwords.words('english') + list(punctuation)) |
| 57 | + columns_to_scale = [key for key in input_types.keys() if input_types[key] == "numeric"] |
| 58 | + |
| 59 | + numeric_transformer = Pipeline([('imputer', SimpleImputer(strategy='median')), |
| 60 | + ('scaler', StandardScaler())]) |
| 61 | + |
| 62 | + columns_to_encode = [key for key in input_types.keys() if input_types[key] == "category"] |
| 63 | + |
| 64 | + categorical_transformer = Pipeline([ |
| 65 | + ('imputer', SimpleImputer(strategy='constant', fill_value='missing')), |
| 66 | + ('onehot', OneHotEncoder(handle_unknown='ignore', sparse=False))]) |
| 67 | + |
| 68 | + text_transformer = Pipeline([ |
| 69 | + ('vect', CountVectorizer(stop_words=stoplist)), |
| 70 | + ('tfidf', TfidfTransformer()) |
| 71 | + ]) |
| 72 | + |
| 73 | + preprocessor = ColumnTransformer( |
| 74 | + transformers=[ |
| 75 | + ('num', numeric_transformer, columns_to_scale), |
| 76 | + ('cat', categorical_transformer, columns_to_encode), |
| 77 | + ('text_Mail', text_transformer, "Content") |
| 78 | + ] |
| 79 | + ) |
| 80 | + clf = Pipeline(steps=[('preprocessor', preprocessor), |
| 81 | + ('classifier', LogisticRegression(max_iter=100))]) |
| 82 | + |
| 83 | + Y = enron_data.df['Target'] |
| 84 | + X = enron_data.df.drop(columns="Target") |
| 85 | + X_train, X_test, Y_train, Y_test = model_selection.train_test_split(X, Y, # NOSONAR |
| 86 | + test_size=0.20, |
| 87 | + random_state=30, |
| 88 | + stratify=Y) |
| 89 | + clf.fit(X_train, Y_train) |
| 90 | + |
| 91 | + train_time = time.time() - start |
| 92 | + model_score = clf.score(X_test, Y_test) |
| 93 | + logging.info(f"Trained model with score: {model_score} in {round(train_time * 1000)} ms") |
| 94 | + |
| 95 | + return GiskardModel( |
| 96 | + prediction_function=clf.predict_proba, |
| 97 | + model_type='classification', |
| 98 | + feature_names=list(input_types), |
| 99 | + classification_threshold=0.5, |
| 100 | + classification_labels=clf.classes_ |
| 101 | + ) |
0 commit comments