Développer et déployer des agents sur Vertex AI Agent Engine
Cette page explique comment créer et déployer un agent qui renvoie le taux de change entre deux devises à une date spécifiée, à l'aide des frameworks d'agents suivants:
Avant de commencer
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the Vertex AI and Cloud Storage APIs.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the Vertex AI and Cloud Storage APIs.
Pour obtenir les autorisations nécessaires pour utiliser Vertex AI Agent Engine, demandez à votre administrateur de vous accorder les rôles IAM suivants sur votre projet:
-
Utilisateur Vertex AI (
roles/aiplatform.user
) -
Administrateur de l'espace de stockage (
roles/storage.admin
)
Pour en savoir plus sur l'attribution de rôles, consultez la page Gérer l'accès aux projets, aux dossiers et aux organisations.
Vous pouvez également obtenir les autorisations requises via des rôles personnalisés ou d'autres rôles prédéfinis.
Installer et initialiser le SDK Vertex AI pour Python
Exécutez la commande suivante pour installer le SDK Vertex AI pour Python et les autres packages requis:
ADK
pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,adk]
LangGraph
pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,langchain]
LangChain
pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,langchain]
AG2
pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,ag2]
LlamaIndex
pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,llama_index]
S'authentifier en tant qu'utilisateur
Colab
Exécutez le code suivant :
from google.colab import auth auth.authenticate_user(project_id="PROJECT_ID")
Cloud Shell
Aucune action n'est requise.
Interface système locale
Exécutez la commande suivante :
gcloud auth application-default login
Exécutez le code suivant pour importer Vertex AI Agent Engine et initialiser le SDK:
import vertexai from vertexai import agent_engines vertexai.init( project="PROJECT_ID", # Your project ID. location="LOCATION", # Your cloud region. staging_bucket="gs://BUCKET_NAME", # Your staging bucket. )
Développer un agent
Commencez par développer un outil:
def get_exchange_rate(
currency_from: str = "USD",
currency_to: str = "EUR",
currency_date: str = "latest",
):
"""Retrieves the exchange rate between two currencies on a specified date."""
import requests
response = requests.get(
f"https://api.frankfurter.app/{currency_date}",
params={"from": currency_from, "to": currency_to},
)
return response.json()
Instanciez ensuite un agent:
ADK
from google.adk.agents import Agent
from vertexai.preview.reasoning_engines import AdkApp
agent = Agent(
model="gemini-2.0-flash",
name='currency_exchange_agent',
tools=[get_exchange_rate],
)
app = AdkApp(agent=agent)
LangGraph
from vertexai import agent_engines
agent = agent_engines.LanggraphAgent(
model="gemini-2.0-flash",
tools=[get_exchange_rate],
model_kwargs={
"temperature": 0.28,
"max_output_tokens": 1000,
"top_p": 0.95,
},
)
LangChain
from vertexai import agent_engines
agent = agent_engines.LangchainAgent(
model="gemini-2.0-flash",
tools=[get_exchange_rate],
model_kwargs={
"temperature": 0.28,
"max_output_tokens": 1000,
"top_p": 0.95,
},
)
AG2
from vertexai import agent_engines
agent = agent_engines.AG2Agent(
model="gemini-2.0-flash",
runnable_name="Get Exchange Rate Agent",
tools=[get_exchange_rate],
)
LlamaIndex
from vertexai.preview import reasoning_engines
def runnable_with_tools_builder(model, runnable_kwargs=None, **kwargs):
from llama_index.core.query_pipeline import QueryPipeline
from llama_index.core.tools import FunctionTool
from llama_index.core.agent import ReActAgent
llama_index_tools = []
for tool in runnable_kwargs.get("tools"):
llama_index_tools.append(FunctionTool.from_defaults(tool))
agent = ReActAgent.from_tools(llama_index_tools, llm=model, verbose=True)
return QueryPipeline(modules = {"agent": agent})
agent = reasoning_engines.LlamaIndexQueryPipelineAgent(
model="gemini-2.0-flash",
runnable_kwargs={"tools": [get_exchange_rate]},
runnable_builder=runnable_with_tools_builder,
)
Enfin, testez l'agent localement:
ADK
for event in app.stream_query(
user_id="USER_ID",
message="What is the exchange rate from US dollars to SEK today?",
):
print(event)
où USER_ID est un ID défini par l'utilisateur avec une limite de 128 caractères.
LangGraph
agent.query(input={"messages": [
("user", "What is the exchange rate from US dollars to SEK today?"),
]})
LangChain
agent.query(
input="What is the exchange rate from US dollars to SEK today?"
)
AG2
agent.query(
input="What is the exchange rate from US dollars to SEK today?"
)
LlamaIndex
agent.query(
input="What is the exchange rate from US dollars to SEK today?"
)
Déployer un agent
Pour déployer l'agent:
ADK
from vertexai import agent_engines
remote_agent = agent_engines.create(
app,
requirements=["google-cloud-aiplatform[agent_engines,adk]"],
)
LangGraph
from vertexai import agent_engines
remote_agent = agent_engines.create(
agent,
requirements=["google-cloud-aiplatform[agent_engines,langchain]"],
)
LangChain
from vertexai import agent_engines
remote_agent = agent_engines.create(
agent,
requirements=["google-cloud-aiplatform[agent_engines,langchain]"],
)
AG2
from vertexai import agent_engines
remote_agent = agent_engines.create(
agent,
requirements=["google-cloud-aiplatform[agent_engines,ag2]"],
)
LlamaIndex
from vertexai import agent_engines
remote_agent = agent_engines.create(
agent,
requirements=["google-cloud-aiplatform[agent_engines,llama_index]"],
)
Une ressource reasoningEngine
est alors créée dans Vertex AI.
Utiliser un agent
Testez l'agent déployé en envoyant une requête:
ADK
for event in remote_agent.stream_query(
user_id="USER_ID",
message="What is the exchange rate from US dollars to SEK today?",
):
print(event)
LangGraph
remote_agent.query(input={"messages": [
("user", "What is the exchange rate from US dollars to SEK today?"),
]})
LangChain
remote_agent.query(
input="What is the exchange rate from US dollars to SEK today?"
)
AG2
remote_agent.query(
input="What is the exchange rate from US dollars to SEK today?"
)
LlamaIndex
remote_agent.query(
input="What is the exchange rate from US dollars to SEK today?"
)
Effectuer un nettoyage
Pour éviter que les ressources utilisées sur cette page soient facturées sur votre compte Google Cloud , procédez comme suit :
remote_agent.delete(force=True)