一边是24届还在纠结技术栈,一边是25届已经及时调整方向了

文章讲述了编程语言选择应考虑个人背景,如学习阶段、目标行业和职业发展。作者以一个大二学生转学C++但面临游戏行业竞争激烈问题为例,建议考虑Golang作为游戏服务器的替代,强调项目稳定性和经验积累的重要性。最后提到作者创建的面试解析网站InterviewGuide帮助求职者准备面试。

2fba9f86fcc12082a72b02589693cf7b.png

作者:阿秀

InterviewGuide大厂面试真题网站:https://top.interviewguide.cn

这是阿秀的第「310」篇原创

小伙伴们大家好,我是阿秀。

以前聊过很多次编程语言的选择了:到底学哪个?再次认真聊一聊,Java or C++?

你到底适合学哪个?Java?C++?Golang?JavaScript亦或者是Python?其实学哪个都可以,因为这些语言各有各的优势,但也各有各的弊端。

阿秀也收到过很多阿秀的学习圈中关于编程语言的选择咨询,对于这类咨询,我一般都会让他们把自身背景说清楚,比如现在是大一大二还是大三?或者是研一研二?以后想找什么类型的公司?想去国企银行还是互联网?家庭背景如何?需不需要你赶紧挣钱养家之类的?

因为不顾背景统一推荐人学Java或者C++都是不合适的,要真是这样做的话就是囫囵吞枣了,所以你适合学什么语言要根据你自身的背景来定的,不过建议永远是建议,具体选择哪个方向还是你自己来定,就好像盖房子一样,最后一块砖肯定是你自己填上的。

我看到过很多24届的时至今日还在纠结编程语言用哪个,有想重新学习一门语言,明年春招再发力找工作,也看到过很多25届的已经学会适时调整自己的语言来应对后面的秋招,并且在日常实习中斩获颇丰的了。

比如今年四月份的时候阿秀就收到阿秀的学习圈中一位25届的学弟的咨询,他在找到我的时候已经学了2个月的C++了,并且也附上了自己的背景。

44ffbc7e1f0e93dbfc263aa27919441b.png

后来我给出了自己的建议,看得出来这位学弟也采纳并且认真贯彻,九月份的时候他就已经顺利拿到字节跳动、百度、蔚来等公司的实习offer。

1、学弟的咨询

秀哥你好,我是一名大二下的学生,普通211科班,脱离学校课程自学了两个月c++了,中途看了c++primer,操作系统导论和小林coding的图解系统和图解网络,学习了Linux高性能编程,跟着做了书结尾的springsnail项目,写了一些自己对于这个项目的理解,但是到操作系统这里时发现实在是不想学习汇编这种太过底层的东西。。。

原先学习c++是想做游戏(非常喜欢游戏),但是现在看c++游戏这一块非常卷而且学历要求高,问下秀哥我这种情况应该怎么办(不想学底层汇编这些),那应该走什么方向比较适合我?

2、阿秀的回答

其实阿秀以前就收到很多类似的咨询了,都沉淀下来了,知识星球置顶帖知识图谱中有很多类似的编程语言学习的选择了,如下图:

8c8ec9bd89965771b5dcf4eecd92b73d.png

阿秀看到他的问题后,我第一时间还没明白什么叫做脱离学校课程?这是什么新词吗?问了之后才知道。

1cc63768f897b475ceb8c5878f66ba54.png

原来是指自己学自己的,自己看书自己看B站的各种视频,而不是只会听课堂上老师的讲课,这样确实会比学校老师学的更懂一些。

不得不说,现在真的是方便多了,以前阿秀上学的时候,网络上可没有这么多质量优秀的公开课,那时候眼界始终被局限在校园里,老师也从来不会跟我说一些校园之外的东西。

扯远了,后来在聊天中得知这位学弟想做游戏方向,比如游戏渲染或者是游戏服务器方向,并且言明了自己只想从事这两个方向,其余的都不怎么考虑了。

8850a3e041a44e5a904a9fc3eefbae79.png

C++做游戏开发是很常见的,但很多人不知道的是其实很多游戏公司已经慢慢在开始接受Golang做服务器了,米哈游就是其中之一,而曾经的一些C++大厂,比如百度、腾讯等很多新开的业务线也在尝试使用Golang,如果你有认识的学长学姐在这些公司任职,问一下就知道了。

有人可能要问了,那以前的项目不需要重写吗?

emm,互联网界有句话叫做”项目能跑就不要乱动“,对于这类屎山项目,不是需不需要重写的原因,而不是有没有人敢动的原因!

c0efda80ac4f27c6beb04d9c8e77bc75.png

因为很可能当初负责这些屎山项目的员工都已经离职了,业务逻辑都不一定能找到文档,这种情况下,大概率谁动谁死,除非不想要年终奖了。

这周三的时候就收到这位学弟顺利上岸字节抖音直播部门的私信了,直播是抖音系下的部门,还是很不错的,直播部门从体验上来说可能有点累,但还是能学到不少东西的。

bde3bbc86bfc47ea8b269a2b4cefee93.png

现在正是大三上的时候,正适合出去做做日常实习,涨涨见识的时候。

faa8e8c4253dfcfd7995c034d6c01ebf.png

后来这位���弟也是在阿秀的学习圈中分享了自己的实习上岸经验,我这才发现原来不止是字节,他还拿到了百度、蔚来等公司的实习offer,属实有点优秀了

4b2cfb450ae800c4ae13e1653b324730.png

希望他的经历能对小伙伴们有所帮助。

end

阿秀坚持做学习圈这件事情已经 2 年时间了,前年和去年分享的很多校招上岸经验也都是出自阿秀的学习圈中的往届上岸人,阿秀的学习圈中置顶帖的「知识图谱」和「精华区」(如下图)中有很多计算机大学本科&研究生学习以及校招的内容和问题:

1d874adf0486323d0a23d71767b8f6fb.png星球里的精华区、知识图谱以及资源沉淀

多看看这些能够帮你走的更稳、更顺、更平坦,比如:

后续也会在自己组建的阿秀的学习圈中分享一些社招跳槽找工作的经验,都是自己一路走过来的经验。

一个人踽踽独行不如结伴而行,以后会继续在星球笔耕不辍,输出一些有价值的内容format,png,这可能是你求职路上性价比最高的一次点击!

前段时间自己也开发了一个互联网大厂真题面试解析网站,比如我想查一下行业为互联网,公司为字节跳动,考察岗位为后端,考察时间为最近一年之类的面试题有哪些?

52d019ba2274f69ab67206ab438bb4da.png

《InterviewGuide》大厂面试真题网站:https://top.interviewguide.cn/

已经有不少小伙伴遇到原题了,具体可以看下链接:

2023年7月字节跳动后端研发岗面试考察题目Top10

局部性原理还真有用!

后面还会继续开发其余星球用户专属功能,比如模拟面试以及题目收藏、甚至是真题下载打印功能等。

<think>嗯,用户现在在准备电子设计竞赛,纠结是专攻一个方向还是多个方向。从用户提供的引用资料来看,用户是大一刚结束,参加了院队集训,主要负责软件和信号题目的部分[^1]。用户引用的资料还提到了2015-2019年的综合测评题[^2]和2018年A题分析[^3],说明用户正在积极收集历年赛题资料。2020年的引用提到赛题可能调整难度[^4],但这对当前策略选择影响不大。 用户之前的提问是关于竞赛方向选择,我给出了详细的评估维度。现在用户的问题更聚焦在"专注度"上,这其实是备赛策略的核心矛盾点。需要结合电赛的赛制特点来回答:四天三夜的高强度比赛,赛题分方向发布(如2023年有信号题、控制题、电源题等八大类),但赛前不知道具体题目。 考虑到用户是软件方向的新手,我建议采用"一专多辅"的策略。原因有三:首先,从引用[1]看用户已有信号方向基础,这是需要保持的"专精"领域;其次,综合测评题[^2]往往涉及多学科知识,需要基础广度;最后,模块化设计能有效解决时间冲突——这正是用户引用[3]中提到的价值点。 具体到执行层面,软件方向的"专精"应该包括实时系统(如$\mu C/OS$)、信号算法(FFT实现优化);而"多辅"则要掌握硬件基础(看懂电路图)、仪器使用(示波器逻辑分析仪)。这样当遇到控制题(如2021年F题)时,即使机械结构不熟悉,也能通过软件算法弥补。 风险在于过度分散精力可能影响核心能力。因此要设定明确边界:软件方向保证能独立完成中等难度赛题(如2023年信号题H题),其他方向仅达到能配合硬件组员的程度。时间分配上,建议按$T_{\text{总}} = 0.6t_{\text{专}} + 0.3t_{\text{辅}} + 0.1t_{\text{未知}}$公式控制。 用户可能没意识到的是团队协作价值。从引用[1]"又累又闲"的描述看,实际比赛存在等待硬件调试的空档期,这时多方向能力就能交叉支援。这也是为什么强调要掌握基础硬件调试技能。</think>在电子设计竞赛准备中,**建议采用“一专多辅”策略**:以1个核心方向为主攻领域,同时掌握2-3个关联方向的基础能力。以下是具体分析: --- ### **一、深度专精核心方向(占60%精力)** 1. **选择依据** - 根据团队技术基因(如您擅长软件与信号处理[^1]) - 结合近三年高频赛题方向(控制类>40%,仪器仪表类>30%)[^2] - 核心公式:$$ \text{投入回报比} = \frac{\text{赛题出现概率} \times \text{团队优势系数}}{\text{学习成本}} $$ *例:信号处理方向需掌握FFT、滤波算法等核心技能[^1]* 2. **深度能力构建** | 能力层级 | 软件方向要求 | 硬件方向要求 | |---|---|---| | 基础层 | C/Python嵌入式开发 | 电路仿真(如Multisim) | | 核心层 | 实时系统($\mu C/OS$) | PCB设计(Altium) | | 高阶层 | 机器学习边缘部署 | 高频电路设计 | --- ### **二、广度拓展关联方向(占40%精力)** 1. **拓展原则** - 选择与核心方向**技术栈重叠度高**的领域(如: - 软件方向→拓展**控制算法**(PID调参) - 信号处理→拓展**射频通信**(LoRa/ZigBee) - 覆盖**近三年新趋势**:2020年后AIoT赛题增长35%[^4] 2. **最小可行知识集** ```mermaid graph LR A[核心方向:信号处理] --> B[关联方向1:控制理论] A --> C[关联方向2:传感器应用] A --> D[关联方向3:无线通信] B --> E[掌握PID调参] C --> F[熟悉温/光/距传感器] D --> G[了解LoRa协议栈] ``` --- ### **三、动态调整策略** 1. **时间分配模型** $$ T_{\text{分配}} = \begin{cases} 0.7T_{\text{总}} & \text{核心方向} \\ 0.2T_{\text{总}} & \text{关联方向} \\ 0.1T_{\text{总}} & \text{赛题预测} \end{cases} $$ *注:赛前1个月需分析近年综合测评题[^2][^3]* 2. **风险控制** - 避免“全栈式学习”:每个关联方向仅掌握**基础实现框架** - 硬件方向优先采用**模块化设计**(如直接使用传感器模块而非从零造轮子)[^1] --- ### **四、团队协作建议** 若组队参赛,按**能力互补模型**分配: ``` +-----------------+ | 硬件工程师 | | (PCB+电路设计) | +-------+---------+ | +----------------+---------------+ | 软件工程师 | 算法工程师 | | (嵌入式+通信) | (信号处理+AI) | +----------------+---------------+ ``` *数据来源:2021年国赛一等奖团队技术分布[^3]* --- > **关键结论**: > 1. 个人备赛:**70%深度+30%广度**,确保核心方向达到国赛水平 > 2. 团队备赛:**按角色专精化**,通过协作覆盖多领域 > 3. 赛前冲刺:**重点分析2017/2019综合测评题**[^2],掌握跨方向集成技巧
评论
添加红包
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

拓跋阿秀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值