多视角学习 (Multi-View Learning)

本文介绍了多视角学习的基本概念及应用,重点讲述了协同训练、多核学习和子空间学习等几种核心算法,并讨论了共识与互补原则。文章还详细解释了协同训练的不同变种及其依赖的假设。

多视角学习 (Multi-View Learning) 简介

 

Views from (1) multiple sources (2) different feature subsets;

视角来自于 (1) 多个源 (2) 多个特征子集

 

Multi-view learning algorithms: (1) co-training (2) multi-kernel learning (3) subspace learning;

多视角学习算法: (1) 协同训练 (2) 多核学习 (3) 子空间学习


Co-training(协同训练) : 
trains alternately to maximize the mutual agreement on two distinct views of the unlabeled data.
Multiple kernel learning(多核学习 ) 
exploits kernels that naturally correspond to different views and combine kernels either linearly or non-linearly to improve learning performance.
Subspace learning(子空间学习 ) 
obtains a latent subspace shared by multiple views by assuming that the input views are generated from this latent subspace.
 

Principles: (1) consensus principle (共识准则) (2) complementary principle (互补准则);

准则: (1) 共识准则 (2) 互补准则

 

Multi-view learning: introduces one function to model a particular view and jointly optimizes all the functions to exploit the redundant views of the same input data and improve the learning performance.

多视角学习:  引入了一个函数去模型化一个特定的视角, 并且利用相同输入的冗余视角去联合优化所有函数, 最终提高学习效果.

 

Co-training: trains alternately(轮流地) to maximize the mutual agreement on two distinct views of the unlabeled data.

协同训练: 在未标记数据的两个不同视角下, 轮流的训练, 使相互一致性最大化.

        Co-training Variants(变种):

                  (1) Expectation-Maximization (EM): assigning changeable probabilistic labels to unlabeled data; (聚类算法-OpenCV有相关函数)

                  (2) Semi-Supervised Learning Algorithm: Muslea et al;

                  (3) Bayesian undirected graphical model & Gaussian process classifiers: Yu et al;

                  (4) Combinative label propagation (结合的标签传播): Wang & Zhou;

                  (5) A data-dependent “co-regularization(协同正则化)”norm: Sindhwani;

                  (6) Data clustering and designed effective algorithms: Bickel & Scheffer and Kumar et al;

         Relying on three assumptions (依赖的三个假设):

                  (1) sufficiency (充足性) - each view is sufficient for classification on its own;

                  (2) compatibility (兼容性) – the target function of both views predict the same labels for co-occurring features with a high probability;

                  (3) conditional independent (条件独立性) – views are conditionally independent given the label.

### 多视图多标签学习的概念与方法 多视图多标签学习Multi-View Multi-Label Learning, MVML)是一种结合了多视图学习和多标签学习的方法。它旨在利用来自不同视角的数据特征来提高分类性能,尤其是在处理复杂数据集时更为有效。 #### 1. 基本定义 多视图多标签学习的核心在于如何有效地融合多个视图的信息以提升预测精度。每个视图可以看作是从不同的角度描述同一个样本[^1]。例如,在图像识别任务中,颜色直方图可能是一个视图,而纹理特征可能是另一个视图。通过整合这些视图中的互补信息,模型能够更全面地理解输入数据。 #### 2. 方法类别 根据具体实现方式的不同,MVML 可分为以下几类: - **基于集成的学习 (Ensemble-based Methods)** 此类方法通常会针对每一个单独的视图构建独立的基础分类器,并最终采用某种策略组合它们的结果。这种方法的优点是可以充分利用各个视图的独特特性。 - **联合表示学习 (Joint Representation Learning)** 联合表示学习试图找到一种统一的方式将所有视图映射到同一低维空间内进行后续操作。典型代表有CCA(Canonical Correlation Analysis)及其变体。 - **深度神经网络框架下的解决方案** 随着深度学习技术的发展,越来越多的研究者开始探索使用深层架构解决MVML问题。比如引入注意力机制(Multi-head attention mechanism),使得模型能够在训练过程中动态调整各视图的重要性权重[^2]。 #### 3. 数据预处理技巧 对于实际应用而言,除了设计合理的算法外还需要注意一些重要的前期准备工作: - 应用适当的数据增强(Data Augmentation Techniques)可以帮助缓解过拟合现象并增加泛化能力; - 当面对不平衡标签分布的情况时,则需采取相应的平衡措施如重采样或者代价敏感型损失函数等手段加以应对。 ```python import numpy as np from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC # Example of Binary Relevance approach using SVMs. X_train = [[0], [1], [2], [3]] y_train = [ [0, 1], [1, 1], [1, 0], [0, 0] ] classifier = OneVsRestClassifier(SVC(kernel='linear')) classifier.fit(X_train, y_train) print(classifier.predict([[0.8]])) ``` 上述代码片段展示了二元相关法(Binary Relevance)的一个简单实例,其中`OneVsRestClassifier`配合支持向量机完成多标签分类任务。 ---
评论 1
添加红包
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值