目录
迁移学习
综述
这段时间要做元学习相关的工作所以,首先对迁移学习了简单的学习分类,接下来会持续更新对于元学习论文的阅读还有理解。
以前接触最多的是图像的分类问题,我们将一个很大的数据集分为两个部分,一部分作为训练集,剩下的部分作为测试集。我们在训练集上面根据神经网络的基础算法比如back propagation 和 SGD算法对网络进行训练,训练结束之后用测试集对网络的泛化能力进行测试,通常用准确率表示。这就是简单的深度学习,这些学习任务的重点是训练出一个泛化能力很强的网络,由于是从相同的数据集里面抽离出来的,所以训练集还有测试集的种类都是相同的,没有多余的类。比如说,MNIST是一个简单的手写数字识别的库,训练集和测试集都是手写的数字,只包含0,1,2,3,4,5,6,7,8,9,0 十个数,不会让你完成其他的任务。
相类似的问题如下图:
可以看到在后面的两个任务里面做了我们看起来毫无关系的迁移学习,这实现起来是相当困难的,甚至可能不会取得很好的效果。
更多的例子见:1 and 2
下面我们对目前存在的迁移学习的种类进行分类,在迁移学习的学习任务中通常包括两个集合,Source Data还有 Target Data,source data。source data是我们解决问题之前就知道的相关的数据,它和Target任务之间存在一定的关系。Target Data
Source Data 与Target Data 都有标签
Fine-tuning
- 任务描述:Source data: (xs,

本文介绍了迁移学习的多种类型,包括Source Data与Target Data均有标签的情况下的Fine-tuning和Multitask Learning,Source Data有标签而Target Data无标签时的Domain-adversarial training和Zero-shot Learning,以及Source Data无标签但Target Data有标签的Self-taught Learning。文章通过实例解释了如何在不同标签情况下应用迁移学习,特别是强调了在Zero-shot Learning中如何利用特征细化进行类别推断。
最低0.47元/天 解锁文章

8419

被折叠的 条评论
为什么被折叠?



