使用 Gemini 2.5 Pro 和 CrewAI 进行客户服务分析

CrewAI 旨在协调自治 AI 智能体,以便它们协作实现复杂目标。它允许您定义具有特定角色、目标和背景故事的智能体,然后为其分配任务,从而简化多智能体系统的开发。此示例演示了如何针对首席运营官 (COO) 用例构建多代理系统:使用 Gemini 2.5 Pro 分析客户支持数据以发现问题并提出流程改进建议。

我们的目标是打造一支 AI 客服人员“团队”,他们能够:

  1. 提取和分析客户支持数据(在此示例中为模拟数据)。
  2. 找出反复出现的问题和流程瓶颈。
  3. 提供切实可行的改进建议。
  4. 将调查结果汇总为适合 COO 的简洁报告。

如果您还没有 Gemini API 密钥,可以在 Google AI Studio 中免费获取一个。

 pip install "crewai[tools]"

将 Gemini API 密钥设置为名为 GEMINI_API_KEY 的环境变量。配置 CrewAI 以使用 Gemini 2.5 Pro 模型。

import os
from crewai import LLM

# Read your API key from the environment variable
gemini_api_key = os.getenv("GEMINI_API_KEY")

if not gemini_api_key:
    raise ValueError("GEMINI_API_KEY environment variable not set.")

# Use Gemini 2.5 Pro Experimental model
gemini_llm = LLM(
    model='gemini/gemini-2.5-pro-preview-05-06', 
    api_key=gemini_api_key,
    temperature=0.0 # Lower temperature for more factual analysis
)

定义组件

CrewAI 应用使用以下几个关键组件构建:工具、代理、任务和 Crew 本身。

工具

工具是智能体可用来与外界互动或执行特定操作的功能。在这里,我们定义了一个占位符工具来模拟提取客户服务数据。在真实应用中,此操作可以连接到数据库、API 或文件系统。

from crewai.tools import BaseTool

# Placeholder Tool for fetching customer support data
class CustomerSupportDataTool(BaseTool):
    name: str = "Customer Support Data Fetcher"
    description: str = "Fetches recent customer support interactions, tickets, and feedback. Returns a summary string."

    def _run(self, argument: str) -> str:
        # In a real scenario, this would query a database or API.
        # For this example, we return simulated data.
        print(f"--- Fetching data for query: {argument} ---")
        return (
            """Recent Support Data Summary:
- 50 tickets related to 'login issues'. High resolution time (avg 48h).
- 30 tickets about 'billing discrepancies'. Mostly resolved within 12h.
- 20 tickets on 'feature requests'. Often closed without resolution.
- Frequent feedback mentions 'confusing user interface' for password reset.
- High volume of calls related to 'account verification process'.
- Sentiment analysis shows growing frustration with 'login issues' resolution time.
- Support agent notes indicate difficulty reproducing 'login issues'."""
        )

support_data_tool = CustomerSupportDataTool()

代理

代理是团队中的各个 AI 工作者。每个代理都有特定的 rolegoalbackstory、分配的 llm,以及可能的 tools

from crewai import Agent

# Agent 1: Data Analyst
data_analyst = Agent(
    role='Customer Support Data Analyst',
    goal='Analyze customer support data to identify trends, recurring issues, and key pain points.',
    backstory=(
        """You are an expert data analyst specializing in customer support operations. 
        Your strength lies in identifying patterns and quantifying problems from raw support data."""
    ),
    verbose=True,
    allow_delegation=False, # This agent focuses on its specific task
    tools=[support_data_tool], # Assign the data fetching tool
    llm=gemini_llm # Use the configured Gemini LLM
)

# Agent 2: Process Optimizer
process_optimizer = Agent(
    role='Process Optimization Specialist',
    goal='Identify bottlenecks and inefficiencies in current support processes based on the data analysis. Propose actionable improvements.',
    backstory=(
        """You are a specialist in optimizing business processes, particularly in customer support. 
        You excel at pinpointing root causes of delays and inefficiencies and suggesting concrete solutions."""
    ),
    verbose=True,
    allow_delegation=False,
    # No specific tools needed, relies on the analysis context provided by the data_analyst
    llm=gemini_llm
)

# Agent 3: Report Writer
report_writer = Agent(
    role='Executive Report Writer',
    goal='Compile the analysis and improvement suggestions into a concise, clear, and actionable report for the COO.',
    backstory=(
        """You are a skilled writer adept at creating executive summaries and reports. 
        You focus on clarity, conciseness, and highlighting the most critical information and recommendations for senior leadership."""
    ),
    verbose=True,
    allow_delegation=False,
    llm=gemini_llm
)

Tasks

任务用于定义客服人员的具体任务。每项任务都有 descriptionexpected_output,并分配给 agent。任务可以依赖于先前任务的输出。

from crewai import Task

# Task 1: Analyze Data
analysis_task = Task(
    description=(
        """Fetch and analyze the latest customer support interaction data (tickets, feedback, call logs) 
        focusing on the last quarter. Identify the top 3-5 recurring issues, quantify their frequency 
        and impact (e.g., resolution time, customer sentiment). Use the Customer Support Data Fetcher tool."""
    ),
    expected_output=(
        """A summary report detailing the key findings from the customer support data analysis, including:
- Top 3-5 recurring issues with frequency.
- Average resolution times for these issues.
- Key customer pain points mentioned in feedback.
- Any notable trends in sentiment or support agent observations."""
    ),
    agent=data_analyst # Assign task to the data_analyst agent
)

# Task 2: Identify Bottlenecks and Suggest Improvements
optimization_task = Task(
    description=(
        """Based on the data analysis report provided by the Data Analyst, identify the primary bottlenecks 
        in the support processes contributing to the identified issues (especially the top recurring ones). 
        Propose 2-3 concrete, actionable process improvements to address these bottlenecks. 
        Consider potential impact and ease of implementation."""
    ),
    expected_output=(
        """A concise list identifying the main process bottlenecks (e.g., lack of documentation for agents, 
        complex escalation path, UI issues) linked to the key problems. 
A list of 2-3 specific, actionable recommendations for process improvement 
(e.g., update agent knowledge base, simplify password reset UI, implement proactive monitoring)."""
    ),
    agent=process_optimizer # Assign task to the process_optimizer agent
    # This task implicitly uses the output of analysis_task as context
)

# Task 3: Compile COO Report
report_task = Task(
    description=(
        """Compile the findings from the Data Analyst and the recommendations from the Process Optimization Specialist 
        into a single, concise executive report for the COO. The report should clearly state:
1. The most critical customer support issues identified (with brief data points).
2. The key process bottlenecks causing these issues.
3. The recommended process improvements.
Ensure the report is easy to understand, focuses on actionable insights, and is formatted professionally."""
    ),
    expected_output=(
        """A well-structured executive report (max 1 page) summarizing the critical support issues, 
        underlying process bottlenecks, and clear, actionable recommendations for the COO. 
        Use clear headings and bullet points."""
    ),
    agent=report_writer # Assign task to the report_writer agent
)

圆领

Crew 将代理和任务整合在一起,定义工作流程(例如顺序)。

from crewai import Crew, Process

# Define the crew with agents, tasks, and process
support_analysis_crew = Crew(
    agents=[data_analyst, process_optimizer, report_writer],
    tasks=[analysis_task, optimization_task, report_task],
    process=Process.sequential,  # Tasks will run sequentially in the order defined
    verbose=True
)

运行小队

最后,使用所有必要的输入启动剧组执行。

# Start the crew's work
print("--- Starting Customer Support Analysis Crew ---")
# The 'inputs' dictionary provides initial context if needed by the first task.
# In this case, the tool simulates data fetching regardless of the input.
result = support_analysis_crew.kickoff(inputs={'data_query': 'last quarter support data'})

print("--- Crew Execution Finished ---")
print("--- Final Report for COO ---")
print(result)

脚本现在将执行。Data Analyst 将使用该工具,Process Optimizer 将分析发现结果,Report Writer 将编译最终报告,然后将其输出到控制台。verbose=True 设置会显示每个代理的详细思考过程和操作。